This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321206 #8 Feb 16 2025 08:33:57 %S A321206 900,1764,3600,4356,4500,6084,6300,7056,8100,8820,9900,10404,11700, %T A321206 12348,12996,15300,17100,19044,19404,20700,21780,22500,22932,25200, %U A321206 26100,27900,29988,30276,30420,30492,31500,33300,33516,34596,35280,36900,38700,39600,40572 %N A321206 Exponential pseudoperfect numbers (A318100) that are not e-perfect (A054979). %C A321206 It seems that most of the exponential pseudoperfect numbers are e-perfect. Up to 10^6 there are 9674 exponential pseudoperfect numbers, of them only 984 are not e-perfect. %H A321206 Amiram Eldar, <a href="/A321206/b321206.txt">Table of n, a(n) for n = 1..1000</a> %H A321206 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e-Divisor.html">e-Divisor</a> %H A321206 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e-PerfectNumber.html">e-Perfect Number</a> %t A321206 dQ[n_,m_] := (n>0&&m>0 &&Divisible[n,m]); expDivQ[n_,d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;;,2]], IntegerExponent[ d,ft[[;;,1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d,expDivQ[n,#]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eAbundantQ[n_] := esigma[n] > 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[!eAbundantQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a %Y A321206 Cf. A054979, A318100. %K A321206 nonn %O A321206 1,1 %A A321206 _Amiram Eldar_, Oct 30 2018