A321218 Decimal expansion of number of Pascals (Pa) in 1 Torr.
1, 3, 3, 3, 2, 2, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8
Offset: 3
Examples
1 Torr = 1/760 atm = 101325/760 Pa = 20265/152 Pa.
Links
- Wikipedia, Torr
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,-1,1).
Programs
-
PARI
default(realprecision, 100); 20265.0/152.0
-
PARI
x='x+O('x^50); Vec(-x^3*(5*x^15-3*x^14+4*x^13-x^12-x^11-3*x^9+2*x^8+3*x^7+x^6-x^4+2*x+1)/((x-1)*(x+1)*(x^2-x+1)*(x^6-x^3+1)))
Formula
a(n) = A021023(n+3) for n >= 9.
G.f.: -x^3*(5*x^15 - 3*x^14 + 4*x^13 - x^12 - x^11 - 3*x^9 + 2*x^8 + 3*x^7 + x^6 - x^4 + 2*x + 1)/((x - 1)*(x + 1)*(x^2 - x + 1)*(x^6 - x^3 + 1))
Comments