This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321221 #19 Nov 19 2018 21:02:42 %S A321221 4,94,400,514,784,904,1114,1144,1264,1354,3244,4204 %N A321221 Numbers of the form 6n-2 which are not a sum of two numbers that are the lesser of twin primes. %C A321221 Conjecture: This sequence is finite. %C A321221 If this sequence is finite, then the Goldbach Strong Conjecture is true. If p1 and p2 are the lesser of twin primes, then q1=p1+2 and q2=p2+2 are also primes (they are the greater of twin primes). If 6n-2 = p1+p2, then 6n = q1+p2 and 6n+2 = q1+q2. %H A321221 Marcin Barylski, <a href="http://tas-moto.org/research/GoldbachStrongConjecture6kpm1Primes.pdf">On 6k ± 1 Primes in Goldbach Strong Conjecture</a> %H A321221 Marcin Barylski, <a href="/A321221/a321221.cpp.txt">C++ program for generating A321221</a> %e A321221 a(1) = 4 because 4 = 2+2; there are no other Goldbach partitions and 2 is not the lesser of twin primes. %e A321221 a(2) is not 6 because 6 = 3+3 and 3 is the lesser of twin primes. %t A321221 aQ[n_]:= (k=1; kmax=(n+2)/6; While[k<=kmax && !AllTrue[{6k-1,6k+1,6(kmax-k)-1,6(kmax-k)+1}, PrimeQ], k++]; k>kmax); Select[6*Range[0,10000]+4,aQ] (* _Amiram Eldar_, Nov 10 2018 *) %o A321221 (PARI) ok(n)={if(n%6 == 4, forstep(k=3, n\2, 2, if(isprime(k) && isprime(k+2) && isprime(n-k) && isprime(n-k+2), return(0))); 1, 0)} \\ _Andrew Howroyd_, Nov 01 2018 %Y A321221 Cf. A001359, A002375. %K A321221 nonn,more %O A321221 1,1 %A A321221 _Marcin Barylski_, Oct 31 2018