cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321223 a(n) is the number of recursively self-conjugate partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 1, 1, 3, 0, 2
Offset: 1

Views

Author

Michael De Vlieger, Oct 31 2018

Keywords

Comments

A recursively self-conjugate partition L has a conjugate L* = L. Further, elimination of the Durfee square and leg (conjugate with the arm) to leave the arm L_1. L_1 likewise has conjugate L_1* = L_1. We continue taking the arm, eliminating the new Durfee square and leg in this manner until the entire partition is processed and all arms are self-conjugate.
We can define a recursively self-conjugate partition L by placing a series S of squares s_k in position k, whose side-lengths decrease as k increases, in the following manner. We place the first square in the upper left corner, then set 2^(k - 1) squares s_k in all places wherein we have bounds by axis or previous square to the left and top. Thereby we can abbreviate all recursively self-conjugate partitions L by S(L). For example, (5,4,4,4,1) = {4,1}, and (10,9,8,7,6,5,4,3,2,1) = {5,3,1,1}. (See Keith 2011 page 9 Fig. 3.)
A190900 = positions of 0 in a(n).
Observation: the graph of this sequence separates into two distinct bands for n greater than approximately 10,000. Values of a(n) for n mod 3 = 0 or 1 tend to be greater than a(n) for n mod 3 = 2. Even within the upper band, we have the mean a(n) for n mod 3 = 0 distinct from the mean a(n) for n mod 3 = 1. See linked graphs. - Michael De Vlieger, Dec 10 2018

Examples

			a(2) = 0 since neither (2) nor (1,1) is recursively symmetrical.
a(6) = 1 since the partition (3,2,1) of 6 is recursively symmetrical. S(3,2,1) = {2,1}.
a(27) = 2 since both (6,6,6,3,3,3) and (6,5,5,5,5,1) are recursively self-conjugate. S(6,6,6,3,3,3) = {3,3}; S(6,5,5,5,5,1) = {5,1}.
a(103) = 3 since there are 3 recursively self-conjugate partitions of 103: (13,13,13,10,10,10,7,6,6,6,3,3,3), (13,12,12,12,12,8,7,6,5,5,5,5,1), and (13,12,12,10,9,9,9,9,9,4,3,3,1). These can be stated in terms of recursive squares as {7,3,3}, {7,5,1}, and {9,3,1} respectively.
		

Crossrefs

Programs

  • Mathematica
    f[w_] := Block[{k}, k = Total@ w; Total@ Map[Apply[Function[{s, t}, s Array[Boole[t <= # <= s + t - 1] &, k] ], #] &, Apply[Join, Prepend[Table[Function[{v, c}, Map[{w[[k]], # + 1} &, Map[Total[v #] &, Tuples[{0, 1}, {Length@ v}]]]] @@ {Most@ #, ConstantArray[1, Length@ # - 1]} &@ Take[w, k], {k, 2, Length@ w}], {{w[[1]], 1}}]]] ]; g[n_] := Block[{w = {n}, c}, c[x_] := Apply[Times, Most@ x - Reverse@ Accumulate@ Reverse@ Rest@ x]; Reap[Do[Which[And[Length@ w == 2, SameQ @@ w], Sow[w]; Break[], Length@ w == 1, Sow[w]; AppendTo[w, 1], c[w] > 0, Sow[w]; AppendTo[w, 1], True, Sow[w]; w = MapAt[1 + # &, Drop[w, -1], -1] ], {i, Infinity}] ][[-1, 1]] ]; Block[{n = 12, a}, a = Merge[Map[<| #1 -> #2 |> & @@ # &, #], Identity] &@ TakeWhile[Sort@ Map[{Total@ #2, #1, #2} & @@ {#, f[#]} &, Apply[Join, Array[g, n]] ], First@ # <= n^2 &][[All, 1 ;; 2]]; Array[Length[Lookup[a, #] /. k_ /; MissingQ@ k -> {}] &, Length@ a] ]