cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321225 Break the infinite word 1232112321... into chunks so that the sum of the digits in the n-th chunk is n.

This page as a plain text file.
%I A321225 #37 Apr 18 2024 11:00:44
%S A321225 1,2,3,211,23,2112,3211,2321,12321,123211,232112,321123,21123211,
%T A321225 2321123,211232112,321123211,232112321,1232112321,12321123211,
%U A321225 23211232112,32112321123,2112321123211,232112321123,21123211232112,32112321123211,23211232112321,123211232112321
%N A321225 Break the infinite word 1232112321... into chunks so that the sum of the digits in the n-th chunk is n.
%C A321225 For every n=3*k, a(n) must be divisible by 3 and is therefore a palindrome. - _Ivan N. Ianakiev_, Nov 01 2018
%C A321225 For every n=3*k, the number of digits of a(n) equals he number of digits of a(n-9)+5 and the starting/ending digits of a(n) and a(n-9) are the same. For any possible natural number m, there are five possible candidate numbers for a(3*k) that are of length m, of which only one, the palindrome, is divisible by 3. - _Ivan N. Ianakiev_, Nov 02 2018
%H A321225 Seiichi Manyama, <a href="/A321225/b321225.txt">Table of n, a(n) for n = 1..1800</a>
%F A321225 Conjectures from _Chai Wah Wu_, Apr 18 2024: (Start)
%F A321225 a(n) = 100001*a(n-9) - 100000*a(n-18) for n > 18.
%F A321225 G.f.: x*(10000*x^16 + 20000*x^15 + 30000*x^14 + 21100*x^13 + 23000*x^12 + 21120*x^11 + 32110*x^10 + 23210*x^9 + 12321*x^8 + 2321*x^7 + 3211*x^6 + 2112*x^5 + 23*x^4 + 211*x^3 + 3*x^2 + 2*x + 1)/(100000*x^18 - 100001*x^9 + 1). (End)
%e A321225 1, 2, 3, 2+1+1=4, 2+3=5, 2+1+1+2=6, 3+2+1+1=7, 2+3+2+1=8, 1+2+3+2+1=9, ... .
%o A321225 (PARI) getd(n) = {my(m = n % 5); if (!m, m = 1); [1, 2, 3, 2, 1][m];}
%o A321225 lista(nn) = {my(k = 1); for (n=1, nn, my (s = 0, list = List(), d); while (s != n, d = getd(k); listput(list, d); s += d; k++;); print1(fromdigits(Vec(list)), ", "););} \\ _Michel Marcus_, Nov 11 2018
%Y A321225 Cf. A028355, A028359, A321232.
%K A321225 nonn,base
%O A321225 1,2
%A A321225 _Seiichi Manyama_, Oct 31 2018