cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321229 Number of non-isomorphic connected weight-n multiset partitions with multiset density -1.

This page as a plain text file.
%I A321229 #6 Nov 01 2018 11:37:52
%S A321229 1,1,3,6,16,37,105,279,817,2387,7269
%N A321229 Number of non-isomorphic connected weight-n multiset partitions with multiset density -1.
%C A321229 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
%C A321229 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e A321229 Non-isomorphic representatives of the a(1) = 1 through a(5) = 37 multiset partitions:
%e A321229   {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
%e A321229          {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
%e A321229          {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
%e A321229                     {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}
%e A321229                     {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}
%e A321229                     {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}
%e A321229                                    {{1,1},{1,1}}      {{1,2,3,4,5}}
%e A321229                                    {{1},{1,2,2}}      {{1},{1,1,1,1}}
%e A321229                                    {{1,2},{2,2}}      {{1,1},{1,1,1}}
%e A321229                                    {{1,3},{2,3}}      {{1,1},{1,2,2}}
%e A321229                                    {{2},{1,2,2}}      {{1},{1,2,2,2}}
%e A321229                                    {{3},{1,2,3}}      {{1,2},{2,2,2}}
%e A321229                                    {{1},{1},{1,1}}    {{1,2},{2,3,3}}
%e A321229                                    {{1},{2},{1,2}}    {{1,3},{2,3,3}}
%e A321229                                    {{2},{2},{1,2}}    {{1,4},{2,3,4}}
%e A321229                                    {{1},{1},{1},{1}}  {{2},{1,1,2,2}}
%e A321229                                                       {{2},{1,2,2,2}}
%e A321229                                                       {{2},{1,2,3,3}}
%e A321229                                                       {{2,2},{1,2,2}}
%e A321229                                                       {{3},{1,2,3,3}}
%e A321229                                                       {{3,3},{1,2,3}}
%e A321229                                                       {{4},{1,2,3,4}}
%e A321229                                                       {{1},{1},{1,1,1}}
%e A321229                                                       {{1},{1,1},{1,1}}
%e A321229                                                       {{1},{1},{1,2,2}}
%e A321229                                                       {{1},{1,2},{2,2}}
%e A321229                                                       {{1},{2},{1,2,2}}
%e A321229                                                       {{2},{1,2},{2,2}}
%e A321229                                                       {{2},{1,3},{2,3}}
%e A321229                                                       {{2},{2},{1,2,2}}
%e A321229                                                       {{2},{3},{1,2,3}}
%e A321229                                                       {{3},{1,3},{2,3}}
%e A321229                                                       {{3},{3},{1,2,3}}
%e A321229                                                       {{1},{1},{1},{1,1}}
%e A321229                                                       {{1},{2},{2},{1,2}}
%e A321229                                                       {{2},{2},{2},{1,2}}
%e A321229                                                       {{1},{1},{1},{1},{1}}
%Y A321229 Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A318697, A321155, A321227, A321228, A321231.
%K A321229 nonn,more
%O A321229 0,3
%A A321229 _Gus Wiseman_, Oct 31 2018