This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321231 #4 Nov 01 2018 11:38:00 %S A321231 1,0,2,3,8,15,42,94,256,656,1807 %N A321231 Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1. %C A321231 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices. %C A321231 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A321231 Non-isomorphic representatives of the a(2) = 2 through a(5) = 15 multiset partitions: %e A321231 {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} %e A321231 {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} %e A321231 {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} %e A321231 {{1,2,3,3}} {{1,2,2,3,3}} %e A321231 {{1,2,3,4}} {{1,2,3,3,3}} %e A321231 {{1,1},{1,1}} {{1,2,3,4,4}} %e A321231 {{1,2},{2,2}} {{1,2,3,4,5}} %e A321231 {{1,3},{2,3}} {{1,1},{1,1,1}} %e A321231 {{1,1},{1,2,2}} %e A321231 {{1,2},{2,2,2}} %e A321231 {{1,2},{2,3,3}} %e A321231 {{1,3},{2,3,3}} %e A321231 {{1,4},{2,3,4}} %e A321231 {{2,2},{1,2,2}} %e A321231 {{3,3},{1,2,3}} %Y A321231 Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A317672, A318697, A321155, A321228, A321229. %K A321231 nonn,more %O A321231 0,3 %A A321231 _Gus Wiseman_, Oct 31 2018