cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321231 Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1.

This page as a plain text file.
%I A321231 #4 Nov 01 2018 11:38:00
%S A321231 1,0,2,3,8,15,42,94,256,656,1807
%N A321231 Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1.
%C A321231 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
%C A321231 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
%e A321231 Non-isomorphic representatives of the a(2) = 2 through a(5) = 15 multiset partitions:
%e A321231   {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
%e A321231   {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
%e A321231            {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
%e A321231                       {{1,2,3,3}}    {{1,2,2,3,3}}
%e A321231                       {{1,2,3,4}}    {{1,2,3,3,3}}
%e A321231                       {{1,1},{1,1}}  {{1,2,3,4,4}}
%e A321231                       {{1,2},{2,2}}  {{1,2,3,4,5}}
%e A321231                       {{1,3},{2,3}}  {{1,1},{1,1,1}}
%e A321231                                      {{1,1},{1,2,2}}
%e A321231                                      {{1,2},{2,2,2}}
%e A321231                                      {{1,2},{2,3,3}}
%e A321231                                      {{1,3},{2,3,3}}
%e A321231                                      {{1,4},{2,3,4}}
%e A321231                                      {{2,2},{1,2,2}}
%e A321231                                      {{3,3},{1,2,3}}
%Y A321231 Cf. A000272, A007716, A007718, A030019, A052888, A134954, A304867, A304887, A317672, A318697, A321155, A321228, A321229.
%K A321231 nonn,more
%O A321231 0,3
%A A321231 _Gus Wiseman_, Oct 31 2018