cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321233 a(n) is the number of reflectable bases of the root system of type D_n.

This page as a plain text file.
%I A321233 #58 Apr 26 2023 18:34:01
%S A321233 0,4,128,4992,241664,14131200,972521472,77138231296,6935178903552,
%T A321233 697359579217920,77576992194560000,9461629052252061696,
%U A321233 1255632936007234486272,180144800985155488448512,27786422394606966747955200,4585649599904345055716966400,806288164205933489807717040128
%N A321233 a(n) is the number of reflectable bases of the root system of type D_n.
%C A321233 The root systems of type D_n are only defined for n >= 4. See chapter 3 of the Humphreys reference. Sequence extended to n=1 using formula/recurrence.
%D A321233 J. E. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed, Springer-Verlag, New York, 1972.
%H A321233 S. Azam, M. B. Soltani, M. Tomie and Y. Yoshii, <a href="https://doi.org/10.4171/PRIMS/55-4-2">A graph theoretical classification for reflectable bases</a>, PRIMS, Vol 55 no 4, (2019), 689-736.
%F A321233 E.g.f.: Sum_{m>=2} (1/(4*m)) (Sum_{k>=1} k^(k-1)*(4*x)^k/k!)^m.
%F A321233 a(n) = 2^n*A320064(n).
%F A321233 a(n) = (n-1)*4^(n-1)*A001863(n). - _M. F. Hasler_, Dec 09 2018
%t A321233 Rest[With[{m = 25}, CoefficientList[Series[Sum[Sum[j^(j - 1)*(4*x)^j/j!, {j, 1, m + 1}]^k/(4*k), {k, 2, m}], {x, 0, m}], x]*Range[0, m]!]] (* _G. C. Greubel_, Dec 09 2018 *)
%o A321233 (PARI) a(n)={n!*polcoef(sum(m=2, n, (sum(k=1, n, k^(k-1)*(4*x)^k/k!) + O(x^(n-m+2)))^m/(4*m)), n)} \\ _Andrew Howroyd_, Nov 01 2018
%o A321233 (PARI) A321233(n)=A001863(n)*(n-1)*4^(n-1) \\ _M. F. Hasler_, Dec 09 2018
%o A321233 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[ (&+[ j^(j-1)*(4*x)^j/Factorial(j) :j in [1..m+3]])^k/(4*k) :k in [2..m+2]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // _G. C. Greubel_, Dec 09 2018
%o A321233 (Python)
%o A321233 from math import comb
%o A321233 def A321233(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<<(n-1<<1) # _Chai Wah Wu_, Apr 26 2023
%Y A321233 Cf. A000435, A320064.
%K A321233 nonn
%O A321233 1,2
%A A321233 _Masaya Tomie_, Nov 01 2018