This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321241 #21 Sep 08 2022 08:46:23 %S A321241 1,-2,-4,4,8,16,-12,-28,-28,-56,64,68,152,144,-20,-72,-678,-508,-424, %T A321241 92,824,1512,2204,1036,936,-1900,-2936,-6444,-5656,-4384,-4808,6540, %U A321241 10080,21256,20296,24424,13520,-7856,-28836,-55744,-72240,-92960,-48424,-40772,36168,106464,199996 %N A321241 Expansion of Product_{i>=1, j>=1, k>=1} (1 - x^(i*j*k))/(1 + x^(i*j*k)). %C A321241 Convolution inverse of A305050. %H A321241 Seiichi Manyama, <a href="/A321241/b321241.txt">Table of n, a(n) for n = 0..10000</a> %F A321241 G.f.: Product_{k>=1} ((1 - x^k)/(1 + x^k))^A007425(k). %F A321241 G.f.: Product_{k>=1} theta_4(x^k)^tau(k), where theta_4() is the Jacobi theta function and tau() is the number of divisors. - _Ilya Gutkovskiy_, May 18 2019 %t A321241 With[{nmax=50}, CoefficientList[Series[Product[(1 - x^(i*j*k))/(1 + x^(i*j*k)), {i,1,nmax}, {j,1,nmax/i}, {k,1,nmax/i/j}], {x,0,nmax}], x]] (* _G. C. Greubel_, Nov 01 2018 *) %o A321241 (PARI) m=50; x='x+O('x^m); Vec(prod(k=1,m, ((1-x^k)/(1+x^k))^sumdiv(k, x, sumdiv(x, y, 1 )))) \\ _G. C. Greubel_, Nov 01 2018 %o A321241 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&*[(&*[(1 - x^(i*j*k))/(1 + x^(i*j*k)): i in [1..m]]): j in [1..m]]): k in [1..m]]))); // _G. C. Greubel_, Nov 01 2018 %Y A321241 Cf. A000005, A002448, A007425, A305050, A320908. %K A321241 sign %O A321241 0,2 %A A321241 _Seiichi Manyama_, Nov 01 2018