cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321260 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(sigma_n(k)-k^n).

This page as a plain text file.
%I A321260 #5 Nov 01 2018 18:21:17
%S A321260 1,0,1,1,18,2,861,132,106024,40910,72980055,6838271,228282942581,
%T A321260 27620223647,2050169324675668,352809815149813,87174966874755673105,
%U A321260 6798293425492905407,18318448554980083512011863,1187839217207171380193247,11258918803635775614062752424535
%N A321260 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^(sigma_n(k)-k^n).
%F A321260 a(n) = [x^n] exp(Sum_{k>=1} sigma_(n+1)(k)*x^(2*k)/(k*(1 - x^k))).
%t A321260 Table[SeriesCoefficient[Product[1/(1 - x^k)^(DivisorSigma[n, k] - k^n), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%t A321260 Table[SeriesCoefficient[Exp[Sum[DivisorSigma[n + 1, k] x^(2 k)/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 20}]
%Y A321260 Cf. A283333, A318783, A318784, A319647, A321258, A321261.
%K A321260 nonn
%O A321260 0,5
%A A321260 _Ilya Gutkovskiy_, Nov 01 2018