cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321264 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^J_n(k), where J_() is the Jordan function.

This page as a plain text file.
%I A321264 #5 Nov 01 2018 18:21:44
%S A321264 1,1,4,34,456,12388,677244,69513187,13727785600,5551190294478,
%T A321264 4378921597198116,6705804947252051188,21038823519531799964724,
%U A321264 131183284379709847290156854,1603688086811508900855649976528,40293997364837932973226463649637881,2031337795407293560044987268598542021504
%N A321264 a(n) = [x^n] Product_{k>=1} 1/(1 - x^k)^J_n(k), where J_() is the Jordan function.
%H A321264 Wikipedia, <a href="http://en.wikipedia.org/wiki/Jordan%27s_totient_function">Jordan's totient function</a>
%F A321264 a(n) = [x^n] exp(Sum_{k>=1} ( Sum_{d|k} Sum_{j|d} d*j^n*mu(d/j) ) * x^k/k).
%t A321264 Table[SeriesCoefficient[Product[1/(1 - x^k)^Sum[d^n MoebiusMu[k/d], {d, Divisors[k]}], {k, 1, n}], {x, 0, n}], {n, 0, 16}]
%t A321264 Table[SeriesCoefficient[Exp[Sum[Sum[Sum[d j^n MoebiusMu[d/j], {j, Divisors[d]}], {d, Divisors[k]}] x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 16}]
%Y A321264 Cf. A059379, A059380, A061255, A301875, A319647, A321265.
%K A321264 nonn
%O A321264 0,3
%A A321264 _Ilya Gutkovskiy_, Nov 01 2018