This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321266 #15 May 22 2025 10:21:48 %S A321266 1,2,3,4,6,8,12,16,17,24,32,34,48,64,68,96,128,136,192,256,272,384, %T A321266 512,544,768,1024,1088,1536,2048,2176,3072,4096,4352,6144,8192,8704, %U A321266 12288,16384,17408,24576,32768,34816,49152,65536,69632,98304,131072,139264 %N A321266 Smallest positive number for which the square cannot be written as sum of distinct squares of any subset of previous terms. %C A321266 a(n)^2 = A226076(n) forms a sum-free sequence. %H A321266 Bert Dobbelaere, <a href="/A321266/b321266.txt">Table of n, a(n) for n = 1..89</a> %H A321266 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a> %F A321266 a(n) = 2 * a(n-3) for n > 9 (conjectured). %e A321266 0^2 = 0 (sum of squares of the empty set). %e A321266 1^2 cannot be written as sum of squares of the empty set, so a(1)=1. %e A321266 Suppose we determined all terms up to a(7)=12: %e A321266 13^2 = 12^2 + 4^2 + 3^2, %e A321266 14^2 = 12^2 + 6^2 + 4^2, %e A321266 15^2 = 12^2 + 8^2 + 4^2 + 1^2. %e A321266 16^2 cannot be written as sum of squares of distinct smaller terms, hence a(8)=16. %o A321266 (Python) %o A321266 def findSum(nopt, tgt, a, smax, pwr): %o A321266 if nopt==0: %o A321266 return [] if tgt==0 else None %o A321266 if tgt<0 or tgt>smax[nopt-1]: %o A321266 return None %o A321266 rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) %o A321266 if rv!=None: %o A321266 rv.append(a[nopt-1]) %o A321266 else: %o A321266 rv=findSum(nopt-1,tgt, a, smax, pwr) %o A321266 return rv %o A321266 def A321266(n): %o A321266 POWER=2 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 %o A321266 while len(a)<n: %o A321266 while True: %o A321266 x+=1 %o A321266 lst=findSum(len(a), x**POWER, a, smax, POWER) %o A321266 if lst==None: %o A321266 break %o A321266 rhs = " + ".join(["%d^%d"%(i,POWER) for i in lst]) %o A321266 print(" %d^%d = %s"%(x,POWER,rhs)) %o A321266 a.append(x) ; sumpwr+=x**POWER %o A321266 print("a(%d) = %d"%(len(a),x)) %o A321266 smax.append(sumpwr) %o A321266 return a[-1] %Y A321266 Square root of A226076. %Y A321266 Other powers: A321290 (3), A321291 (4), A321292 (5), A321293 (6). %K A321266 nonn %O A321266 1,2 %A A321266 _Bert Dobbelaere_, Nov 01 2018