cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321272 Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

This page as a plain text file.
%I A321272 #5 Nov 02 2018 11:23:40
%S A321272 0,1,2,1,3,2,5,1,4,4,7,3,11,7,8,1,15,8,22,7,14,12,30,5,16,19,20,14,42,
%T A321272 18,56,1,24,30,28,18,77,45,38,14
%N A321272 Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
%C A321272 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
%C A321272 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
%F A321272 a(prime(n)) = A000041(n).
%e A321272 Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions:
%e A321272   {{1}}  {{11}}    {{12}}  {{111}}      {{112}}    {{1111}}
%e A321272          {{1}{1}}          {{1}{11}}    {{1}{12}}  {{1}{111}}
%e A321272                            {{1}{1}{1}}             {{11}{11}}
%e A321272                                                    {{1}{1}{11}}
%e A321272                                                    {{1}{1}{1}{1}}
%e A321272 .
%e A321272   {{123}}  {{1122}}      {{1112}}      {{11111}}
%e A321272            {{1}{122}}    {{1}{112}}    {{1}{1111}}
%e A321272            {{2}{112}}    {{11}{12}}    {{11}{111}}
%e A321272            {{1}{2}{12}}  {{1}{1}{12}}  {{1}{1}{111}}
%e A321272                                        {{1}{11}{11}}
%e A321272                                        {{1}{1}{1}{11}}
%e A321272                                        {{1}{1}{1}{1}{1}}
%e A321272 .
%e A321272   {{1123}}    {{111111}}            {{11112}}        {{11122}}
%e A321272   {{1}{123}}  {{1}{11111}}          {{1}{1112}}      {{1}{1122}}
%e A321272   {{12}{13}}  {{11}{1111}}          {{11}{112}}      {{11}{122}}
%e A321272               {{111}{111}}          {{12}{111}}      {{2}{1112}}
%e A321272               {{1}{1}{1111}}        {{1}{1}{112}}    {{1}{1}{122}}
%e A321272               {{1}{11}{111}}        {{1}{11}{12}}    {{1}{2}{112}}
%e A321272               {{11}{11}{11}}        {{1}{1}{1}{12}}  {{2}{11}{12}}
%e A321272               {{1}{1}{1}{111}}                       {{1}{1}{2}{12}}
%e A321272               {{1}{1}{11}{11}}
%e A321272               {{1}{1}{1}{1}{11}}
%e A321272               {{1}{1}{1}{1}{1}{1}}
%Y A321272 Cf. A007718, A181821, A303837, A304382, A305081, A305936, A318284, A321155, A321229, A321253, A321270, A321271.
%K A321272 nonn,more
%O A321272 1,3
%A A321272 _Gus Wiseman_, Nov 01 2018