This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321272 #5 Nov 02 2018 11:23:40 %S A321272 0,1,2,1,3,2,5,1,4,4,7,3,11,7,8,1,15,8,22,7,14,12,30,5,16,19,20,14,42, %T A321272 18,56,1,24,30,28,18,77,45,38,14 %N A321272 Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n. %C A321272 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A321272 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices. %F A321272 a(prime(n)) = A000041(n). %e A321272 Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions: %e A321272 {{1}} {{11}} {{12}} {{111}} {{112}} {{1111}} %e A321272 {{1}{1}} {{1}{11}} {{1}{12}} {{1}{111}} %e A321272 {{1}{1}{1}} {{11}{11}} %e A321272 {{1}{1}{11}} %e A321272 {{1}{1}{1}{1}} %e A321272 . %e A321272 {{123}} {{1122}} {{1112}} {{11111}} %e A321272 {{1}{122}} {{1}{112}} {{1}{1111}} %e A321272 {{2}{112}} {{11}{12}} {{11}{111}} %e A321272 {{1}{2}{12}} {{1}{1}{12}} {{1}{1}{111}} %e A321272 {{1}{11}{11}} %e A321272 {{1}{1}{1}{11}} %e A321272 {{1}{1}{1}{1}{1}} %e A321272 . %e A321272 {{1123}} {{111111}} {{11112}} {{11122}} %e A321272 {{1}{123}} {{1}{11111}} {{1}{1112}} {{1}{1122}} %e A321272 {{12}{13}} {{11}{1111}} {{11}{112}} {{11}{122}} %e A321272 {{111}{111}} {{12}{111}} {{2}{1112}} %e A321272 {{1}{1}{1111}} {{1}{1}{112}} {{1}{1}{122}} %e A321272 {{1}{11}{111}} {{1}{11}{12}} {{1}{2}{112}} %e A321272 {{11}{11}{11}} {{1}{1}{1}{12}} {{2}{11}{12}} %e A321272 {{1}{1}{1}{111}} {{1}{1}{2}{12}} %e A321272 {{1}{1}{11}{11}} %e A321272 {{1}{1}{1}{1}{11}} %e A321272 {{1}{1}{1}{1}{1}{1}} %Y A321272 Cf. A007718, A181821, A303837, A304382, A305081, A305936, A318284, A321155, A321229, A321253, A321270, A321271. %K A321272 nonn,more %O A321272 1,3 %A A321272 _Gus Wiseman_, Nov 01 2018