This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321276 #9 Nov 03 2018 17:31:42 %S A321276 1,3,20,174,1915,25861,407691,7330188,148016449,3312032213, %T A321276 81207824255,2162810487154,62125097028962,1913156511113517, %U A321276 62839800627095263,2191735865280260976,80859575674731497805,3144804693463679033629,128550453029684197431607 %N A321276 Sum over all permutations of [n] of the length of the longest increasing subsequence raised to the power of the length of the longest decreasing subsequence. %H A321276 Alois P. Heinz, <a href="/A321276/b321276.txt">Table of n, a(n) for n = 1..70</a> %H A321276 Wikipedia, <a href="https://en.wikipedia.org/wiki/Longest_increasing_subsequence">Longest increasing subsequence</a> %p A321276 h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(j> %p A321276 l[k], 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)): %p A321276 f:= l-> h(l)^2*l[1]^nops(l): %p A321276 g:= (n, i, l)-> `if`(n=0 or i=1, f([l[], 1$n]), %p A321276 g(n, i-1, l) +g(n-i, min(i, n-i), [l[], i])): %p A321276 a:= n-> g(n$2, []): %p A321276 seq(a(n), n=1..23); %Y A321276 Cf. A003316, A321273, A321274, A321275, A321277, A321278. %K A321276 nonn %O A321276 1,2 %A A321276 _Alois P. Heinz_, Nov 01 2018