This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321279 #4 Nov 02 2018 11:23:18 %S A321279 0,1,2,1,2,1,3,1,1,2,2,2,4,2,2,1,2,3,4,4,2,4,3,4,4,3,4,6,4,6,2,1,4,6, %T A321279 4,9,6,5,3,9,2,8,4,9,8,7,4,8,4,12,6,12,5,16,8,17,5,7,2,19,6,10,10,1,6, %U A321279 13,2,16,7,16,6,27,4,7,16,20,8,15,4,22 %N A321279 Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n. %C A321279 This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A321279 The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices. %e A321279 The sequence of antichains begins: %e A321279 2: {{1}} %e A321279 3: {{1,1}} %e A321279 3: {{1},{1}} %e A321279 4: {{1,2}} %e A321279 5: {{1,1,1}} %e A321279 5: {{1},{1},{1}} %e A321279 6: {{1,1,2}} %e A321279 7: {{1,1,1,1}} %e A321279 7: {{1,1},{1,1}} %e A321279 7: {{1},{1},{1},{1}} %e A321279 8: {{1,2,3}} %e A321279 9: {{1,1,2,2}} %e A321279 10: {{1,1,1,2}} %e A321279 10: {{1,1},{1,2}} %e A321279 11: {{1,1,1,1,1}} %e A321279 11: {{1},{1},{1},{1},{1}} %e A321279 12: {{1,1,2,3}} %e A321279 12: {{1,2},{1,3}} %e A321279 13: {{1,1,1,1,1,1}} %e A321279 13: {{1,1,1},{1,1,1}} %e A321279 13: {{1,1},{1,1},{1,1}} %e A321279 13: {{1},{1},{1},{1},{1},{1}} %e A321279 14: {{1,1,1,1,2}} %e A321279 14: {{1,2},{1,1,1}} %e A321279 15: {{1,1,1,2,2}} %e A321279 15: {{1,1},{1,2,2}} %e A321279 16: {{1,2,3,4}} %t A321279 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A321279 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A321279 zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A321279 zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s]; %t A321279 Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}] %Y A321279 Cf. A001055, A007718, A030019, A181821, A293607, A303837, A304382, A305081, A305936, A318284, A321229, A321270, A321271, A321272. %K A321279 nonn %O A321279 1,3 %A A321279 _Gus Wiseman_, Nov 01 2018