cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321290 Smallest positive number for which the 3rd power cannot be written as sum of 3rd powers of any subset of previous terms.

This page as a plain text file.
%I A321290 #11 Sep 19 2024 19:40:14
%S A321290 1,2,3,4,5,7,8,10,11,13,17,21,22,28,29,33,38,41,48,68,70,96,124,130,
%T A321290 158,179,239,309,310,351,468,509,640,843,900,1251,1576,1640,2305,2444,
%U A321290 2989,3410,4575,5758,5998,7490,8602,11657,13017,15553,19150,24411,25365
%N A321290 Smallest positive number for which the 3rd power cannot be written as sum of 3rd powers of any subset of previous terms.
%C A321290 a(n)^3 forms a sum-free sequence.
%H A321290 Bert Dobbelaere, <a href="/A321290/b321290.txt">Table of n, a(n) for n = 1..100</a>
%H A321290 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a>
%e A321290 a(10) = 13. 3rd powers of 14, 15 and 16 can be written as sums of 3rd powers of a subset of the terms {a(1)..a(10)}:
%e A321290 14^3 = 2^3 + 3^3 + 8^3 + 13^3,
%e A321290 15^3 = 4^3 + 5^3 + 7^3 + 8^3 + 10^3 + 11^3,
%e A321290 16^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 7^3 + 11^3 + 13^3,
%e A321290 17^3 cannot be written in this way, so a(11) = 17 is the next term.
%o A321290 (Python)
%o A321290 def findSum(nopt, tgt, a, smax, pwr):
%o A321290     if nopt==0:
%o A321290         return [] if tgt==0 else None
%o A321290     if tgt<0 or tgt>smax[nopt-1]:
%o A321290         return None
%o A321290     rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
%o A321290     if rv!=None:
%o A321290         rv.append(a[nopt-1])
%o A321290     else:
%o A321290         rv=findSum(nopt-1, tgt, a, smax, pwr)
%o A321290     return rv
%o A321290 def A321290(n):
%o A321290     POWER=3 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
%o A321290     while len(a)<n:
%o A321290         while True:
%o A321290             x+=1
%o A321290             lst=findSum(len(a), x**POWER, a, smax, POWER)
%o A321290             if lst==None:
%o A321290                 break
%o A321290             rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
%o A321290             print("    %d^%d = %s"%(x, POWER, rhs))
%o A321290         a.append(x) ; sumpwr+=x**POWER
%o A321290         print("a(%d) = %d"%(len(a), x))
%o A321290         smax.append(sumpwr)
%o A321290     return a[-1]
%Y A321290 Other powers: A321266 (2), A321291 (4), A321292 (5), A321293 (6)
%K A321290 nonn
%O A321290 1,2
%A A321290 _Bert Dobbelaere_, Nov 02 2018