This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321290 #11 Sep 19 2024 19:40:14 %S A321290 1,2,3,4,5,7,8,10,11,13,17,21,22,28,29,33,38,41,48,68,70,96,124,130, %T A321290 158,179,239,309,310,351,468,509,640,843,900,1251,1576,1640,2305,2444, %U A321290 2989,3410,4575,5758,5998,7490,8602,11657,13017,15553,19150,24411,25365 %N A321290 Smallest positive number for which the 3rd power cannot be written as sum of 3rd powers of any subset of previous terms. %C A321290 a(n)^3 forms a sum-free sequence. %H A321290 Bert Dobbelaere, <a href="/A321290/b321290.txt">Table of n, a(n) for n = 1..100</a> %H A321290 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a> %e A321290 a(10) = 13. 3rd powers of 14, 15 and 16 can be written as sums of 3rd powers of a subset of the terms {a(1)..a(10)}: %e A321290 14^3 = 2^3 + 3^3 + 8^3 + 13^3, %e A321290 15^3 = 4^3 + 5^3 + 7^3 + 8^3 + 10^3 + 11^3, %e A321290 16^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 7^3 + 11^3 + 13^3, %e A321290 17^3 cannot be written in this way, so a(11) = 17 is the next term. %o A321290 (Python) %o A321290 def findSum(nopt, tgt, a, smax, pwr): %o A321290 if nopt==0: %o A321290 return [] if tgt==0 else None %o A321290 if tgt<0 or tgt>smax[nopt-1]: %o A321290 return None %o A321290 rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) %o A321290 if rv!=None: %o A321290 rv.append(a[nopt-1]) %o A321290 else: %o A321290 rv=findSum(nopt-1, tgt, a, smax, pwr) %o A321290 return rv %o A321290 def A321290(n): %o A321290 POWER=3 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 %o A321290 while len(a)<n: %o A321290 while True: %o A321290 x+=1 %o A321290 lst=findSum(len(a), x**POWER, a, smax, POWER) %o A321290 if lst==None: %o A321290 break %o A321290 rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst]) %o A321290 print(" %d^%d = %s"%(x, POWER, rhs)) %o A321290 a.append(x) ; sumpwr+=x**POWER %o A321290 print("a(%d) = %d"%(len(a), x)) %o A321290 smax.append(sumpwr) %o A321290 return a[-1] %Y A321290 Other powers: A321266 (2), A321291 (4), A321292 (5), A321293 (6) %K A321290 nonn %O A321290 1,2 %A A321290 _Bert Dobbelaere_, Nov 02 2018