cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321291 Smallest positive number for which the 4th power cannot be written as sum of 4th powers of any subset of previous terms.

This page as a plain text file.
%I A321291 #12 Sep 19 2024 21:57:07
%S A321291 1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,26,27,28,
%T A321291 32,34,36,38,40,42,44,46,48,52,54,56,64,68,72,76,80,84,88,92,96,104,
%U A321291 108,112,128,136,144,152,160,168,176,184,192,208,216,224,256
%N A321291 Smallest positive number for which the 4th power cannot be written as sum of 4th powers of any subset of previous terms.
%C A321291 a(n)^4 forms a sum-free sequence.
%C A321291 It is noteworthy that the terms of this sequence increase slower than those of similar sequences for smaller (A321266, A321290) but also larger powers (A321292, A321293).
%H A321291 Bert Dobbelaere, <a href="/A321291/b321291.txt">Table of n, a(n) for n = 1..104</a>
%H A321291 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a>
%F A321291 a(n) = 2 * a(n-12) for n > 25 (conjectured).
%e A321291 The smallest number > 0 that is not in the sequence is 15, because
%e A321291     15^4 = 4^4 + 6^4 + 8^4 + 9^4 + 14^4.
%o A321291 (Python)
%o A321291 def findSum(nopt, tgt, a, smax, pwr):
%o A321291     if nopt==0:
%o A321291         return [] if tgt==0 else None
%o A321291     if tgt<0 or tgt>smax[nopt-1]:
%o A321291         return None
%o A321291     rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
%o A321291     if rv!=None:
%o A321291         rv.append(a[nopt-1])
%o A321291     else:
%o A321291         rv=findSum(nopt-1, tgt, a, smax, pwr)
%o A321291     return rv
%o A321291 def A321291(n):
%o A321291     POWER=4 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
%o A321291     while len(a)<n:
%o A321291         while True:
%o A321291             x+=1
%o A321291             lst=findSum(len(a), x**POWER, a, smax, POWER)
%o A321291             if lst==None:
%o A321291                 break
%o A321291             rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
%o A321291             print("    %d^%d = %s"%(x, POWER, rhs))
%o A321291         a.append(x) ; sumpwr+=x**POWER
%o A321291         print("a(%d) = %d"%(len(a), x))
%o A321291         smax.append(sumpwr)
%o A321291     return a[-1]
%Y A321291 Other powers: A321266 (2), A321290 (3), A321292 (5), A321293 (6).
%K A321291 nonn
%O A321291 1,2
%A A321291 _Bert Dobbelaere_, Nov 02 2018