This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321292 #13 Sep 19 2024 21:57:03 %S A321292 1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,25,26,27,28,30, %T A321292 37,43,44,55,57,64,77,82,90,97,112,116,119,154,156,178,202,227,269, %U A321292 309,335,371,397,442,516,604,643,722,774,815,1000,1115,1308,1503 %N A321292 Smallest positive number for which the 5th power cannot be written as sum of distinct 5th powers of any subset of previous terms. %C A321292 a(n)^5 forms a sum-free sequence. %H A321292 Bert Dobbelaere, <a href="/A321292/b321292.txt">Table of n, a(n) for n = 1..150</a> %H A321292 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a> %e A321292 The smallest number > 0 that is not in the sequence is 12, because %e A321292 12^5 = 4^5 + 5^5 + 6^5 + 7^5 + 9^5 + 11^5. %o A321292 (Python) %o A321292 def findSum(nopt, tgt, a, smax, pwr): %o A321292 if nopt==0: %o A321292 return [] if tgt==0 else None %o A321292 if tgt<0 or tgt>smax[nopt-1]: %o A321292 return None %o A321292 rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) %o A321292 if rv!=None: %o A321292 rv.append(a[nopt-1]) %o A321292 else: %o A321292 rv=findSum(nopt-1, tgt, a, smax, pwr) %o A321292 return rv %o A321292 def A321292(n): %o A321292 POWER=5 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 %o A321292 while len(a)<n: %o A321292 while True: %o A321292 x+=1 %o A321292 lst=findSum(len(a), x**POWER, a, smax, POWER) %o A321292 if lst==None: %o A321292 break %o A321292 rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst]) %o A321292 print(" %d^%d = %s"%(x, POWER, rhs)) %o A321292 a.append(x) ; sumpwr+=x**POWER %o A321292 print("a(%d) = %d"%(len(a), x)) %o A321292 smax.append(sumpwr) %o A321292 return a[-1] %Y A321292 Other powers: A321266 (2), A321290 (3), A321291 (4), A321293 (6). %K A321292 nonn %O A321292 1,2 %A A321292 _Bert Dobbelaere_, Nov 02 2018