cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321293 Smallest positive number for which the 6th power cannot be written as sum of distinct 6th powers of any subset of previous terms.

This page as a plain text file.
%I A321293 #11 Sep 19 2024 21:56:59
%S A321293 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,
%T A321293 29,30,31,33,34,42,43,51,57,60,61,71,74,88,91,99,112,116,117,132,152,
%U A321293 153,176,203,228,244,256,281,293,345,392,439,441,529,594,627
%N A321293 Smallest positive number for which the 6th power cannot be written as sum of distinct 6th powers of any subset of previous terms.
%C A321293 a(n)^6 forms a sum-free sequence.
%H A321293 Bert Dobbelaere, <a href="/A321293/b321293.txt">Table of n, a(n) for n = 1..150</a>
%H A321293 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a>
%e A321293 The smallest number > 0 that is not in the sequence is 25, because 25^6 = 1^6 + 2^6 + 3^6 + 5^6 + 6^6 + 7^6 + 8^6 + 9^6 + 10^6 + 12^6 + 13^6 + 15^6 + 16^6 + 17^6 + 18^6 + 23^6.
%o A321293 (Python)
%o A321293 def findSum(nopt, tgt, a, smax, pwr):
%o A321293     if nopt==0:
%o A321293         return [] if tgt==0 else None
%o A321293     if tgt<0 or tgt>smax[nopt-1]:
%o A321293         return None
%o A321293     rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr)
%o A321293     if rv!=None:
%o A321293         rv.append(a[nopt-1])
%o A321293     else:
%o A321293         rv=findSum(nopt-1, tgt, a, smax, pwr)
%o A321293     return rv
%o A321293 def A321293(n):
%o A321293     POWER=6 ; x=0 ; a=[] ; smax=[] ; sumpwr=0
%o A321293     while len(a)<n:
%o A321293         while True:
%o A321293             x+=1
%o A321293             lst=findSum(len(a), x**POWER, a, smax, POWER)
%o A321293             if lst==None:
%o A321293                 break
%o A321293             rhs = " + ".join(["%d^%d"%(i, POWER) for i in lst])
%o A321293             print("    %d^%d = %s"%(x, POWER, rhs))
%o A321293         a.append(x) ; sumpwr+=x**POWER
%o A321293         print("a(%d) = %d"%(len(a), x))
%o A321293         smax.append(sumpwr)
%o A321293     return a[-1]
%Y A321293 Other powers: A321266 (2), A321290 (3), A321291 (4), A321292 (5).
%K A321293 nonn
%O A321293 1,2
%A A321293 _Bert Dobbelaere_, Nov 02 2018