This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321296 #29 Apr 30 2020 07:51:18 %S A321296 1,0,1,0,2,3,0,5,20,16,0,15,122,237,131,0,52,774,2751,3524,1496,0,203, %T A321296 5247,30470,68000,65055,22482,0,877,38198,341244,1181900,1913465, %U A321296 1462320,426833,0,4140,298139,3949806,19946654,48636035,61692855,39282229,9934563 %N A321296 Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are in (weakly) increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A321296 Alois P. Heinz, <a href="/A321296/b321296.txt">Rows n = 0..140, flattened</a> %H A321296 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A321296 T(3,2) = 20: 1a2a3b, 1a2b3b, 1a|2a3b, 1a|2b3b, 1b|2a3a, 1b|2a3b, 1a3b|2a, 1b3b|2a, 1a3a|2b, 1a3b|2b, 1a2b|3a, 1b2b|3a, 1a2a|3b, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a. %e A321296 Triangle T(n,k) begins: %e A321296 1; %e A321296 0, 1; %e A321296 0, 2, 3; %e A321296 0, 5, 20, 16; %e A321296 0, 15, 122, 237, 131; %e A321296 0, 52, 774, 2751, 3524, 1496; %e A321296 0, 203, 5247, 30470, 68000, 65055, 22482; %e A321296 0, 877, 38198, 341244, 1181900, 1913465, 1462320, 426833; %e A321296 ... %p A321296 A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)* %p A321296 binomial(n-1, j-1)*binomial(k+j-1, j), j=1..n)) %p A321296 end: %p A321296 T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): %p A321296 seq(seq(T(n, k), k=0..n), n=0..10); %t A321296 A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k + j - 1, j], {j, n}]]; %t A321296 T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]; %t A321296 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 30 2020, after _Alois P. Heinz_ *) %Y A321296 Columns k=0-2 give: A000007, A000110 (for n>0), A325890. %Y A321296 Main diagonal gives A023998. %Y A321296 Row sums give A325888. %Y A321296 T(2n,n) gives A325889. %Y A321296 Cf. A322670. %K A321296 nonn,tabl %O A321296 0,5 %A A321296 _Alois P. Heinz_, Aug 29 2019