cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321299 Expansion of Product_{1 <= i <= j} (1 - x^(i*j)).

This page as a plain text file.
%I A321299 #20 Nov 03 2018 11:45:13
%S A321299 1,-1,-1,0,-1,2,0,2,0,-1,2,-1,-2,0,0,-4,0,-1,1,0,2,2,2,-1,3,-1,1,6,-2,
%T A321299 1,-6,1,-4,5,-7,-5,-1,-4,-2,6,-4,0,0,-2,13,-7,8,2,5,1,10,2,9,-3,-1,-1,
%U A321299 -6,-7,2,-5,-8,1,-6,-17,-4,13,-8,1,-16,-14,3,7,-1,20,-10,13,-3,8
%N A321299 Expansion of Product_{1 <= i <= j} (1 - x^(i*j)).
%H A321299 Seiichi Manyama, <a href="/A321299/b321299.txt">Table of n, a(n) for n = 0..10000</a>
%F A321299 G.f.: Product_{k>0} (1 - x^k)^A038548(k).
%t A321299 nmax = 100; CoefficientList[Series[Product[(1 - x^k)^Floor[(DivisorSigma[0, k] + 1)/2], {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 03 2018 *)
%Y A321299 Convolution inverse of A182269.
%Y A321299 Cf. A038548, A211856, A321300.
%K A321299 sign,look
%O A321299 0,6
%A A321299 _Seiichi Manyama_, Nov 03 2018