cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321312 A(n,k) = n^^k is the k-th tetration of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A321312 #20 Feb 16 2025 08:33:57
%S A321312 1,0,1,1,1,1,0,1,2,1,1,1,4,3,1,0,1,16,27,4,1,1,1,65536,7625597484987,
%T A321312 256,5,1
%N A321312 A(n,k) = n^^k is the k-th tetration of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H A321312 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>
%H A321312 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>
%H A321312 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>
%H A321312 <a href="/index/Te#tetration">Index entries for sequences related to tetration</a>
%e A321312 Square array A(n,k) begins:
%e A321312   1, 0,      1,              0,      1,   0,   1, ...
%e A321312   1, 1,      1,              1,      1,   1,   1, ...
%e A321312   1, 2,      4,             16,  65536, ...
%e A321312   1, 3,     27,  7625597484987,    ...
%e A321312   1, 4,    256,            ...
%e A321312   1, 5,   3125,            ...
%e A321312   1, 6,  46656,            ...
%e A321312   1, 7, 823543,            ...
%e A321312   ...
%p A321312 A:= (n, k)-> `if`(k=0, 1, n^A(n, k-1)):
%p A321312 seq(seq(A(n, d-n), n=0..d), d=0..6);
%Y A321312 Columns k=0-3 give: A000012, A001477, A000312, A002488.
%Y A321312 Rows n=0-4 give: A059841, A000012, A014221, A014222(k+1), A114561(k+1).
%Y A321312 Main diagonal gives A004231 (Ackermann's sequence).
%Y A321312 Cf. A027747, A171882 (by upwards diagonals).
%K A321312 nonn,tabl
%O A321312 0,9
%A A321312 _Alois P. Heinz_, Nov 03 2018