A321338 Number of solutions to dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2 = 4n, where a,b,c,d are even +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.
16, 96, 64, 256, 192, 1536, 960
Offset: 1
Links
- L. D. Baumert and M. Hall, Hadamard matrices of the Williamson type, Math. Comp. 19:91 (1965) 442-447.
- D. Z. Dokovic, Williamson matrices of order 4n for n= 33, 35, 39, Discrete mathematics (1993) May 15;115(1-3):267-71.
- Jeffery Kline, A complete list of solutions (a,b,c,d), for 1<=n<=7.
Comments