cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321338 Number of solutions to dft(a)^2 + dft(b)^2 + dft(c)^2 + dft(d)^2 = 4n, where a,b,c,d are even +1,-1 sequences of length n and dft(x) denotes the discrete Fourier transform of x.

Original entry on oeis.org

16, 96, 64, 256, 192, 1536, 960
Offset: 1

Views

Author

Jeffery Kline, Dec 18 2018

Keywords

Comments

Each solution corresponds to a Hadamard matrix of quaternion type. That is, if H = [[A, B, C, D], [-B, A, -D, C], [-C, D, A, -B], [-D, -C, B, A]], where A,B,C, and D are circulant matrices formed from a,b,c and d, respectively, then H is Hadamard.
Since a,b,c and d are even, their discrete Fourier transforms are real-valued.
16 is a divisor of a(n), for all n. If (a,b,c,d) is a solution, then each of the 16 tuples ((+-)a, (+-)b, (+-)c, (+-)d) is also a solution.
It appears that a(2n) > a(2n-1).
A321851(n) >= a(n), A322617(n) >= a(n) and A322639(n) >= a(n). Every solution that is counted by a(n) is also counted by A321851(n), A322617(n) and A322639(n), respectively.

Crossrefs