cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321344 Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(3^k))^(3^(k+1)).

This page as a plain text file.
%I A321344 #11 Nov 07 2018 03:11:40
%S A321344 1,4,10,29,71,146,309,615,1119,2068,3709,6289,10793,18206,29513,48201,
%T A321344 77757,121668,191257,297847,452761,690524,1045661,1552697,2310786,
%U A321344 3419082,4976739,7254407,10522736,15052376,21552205,30731101,43297942,61039239,85741503,119191245
%N A321344 Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(3^k))^(3^(k+1)).
%C A321344 Also the coefficient of x^(3*n) in the expansion of Product_{k>=0} 1/(1 - x^(3^k))^(3^k).
%e A321344 Product_{k>=0} 1/(1 - x^(3^k))^(3^k) = 1 + x + x^2 + 4*x^3 + 4*x^4 + 4*x^5 + 10*x^6 + 10*x^7 + 10*x^8 + 29*x^9 + 29*x^10 + 29*x^11 + ... .
%o A321344 (PARI) seq(n)={Vec(1/((1 - x)*prod(k=0, logint(n,3), (1 - x^(3^k) + O(x*x^n))^(3^(k+1)))))} \\ _Andrew Howroyd_, Nov 06 2018
%Y A321344 Cf. A321335, A321345.
%K A321344 nonn
%O A321344 0,2
%A A321344 _Seiichi Manyama_, Nov 06 2018