cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321346 Number of integer partitions of n containing no prime powers > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 11, 14, 16, 19, 19, 25, 26, 31, 34, 40, 41, 52, 54, 63, 69, 81, 86, 105, 109, 126, 137, 160, 169, 201, 211, 242, 264, 303, 320, 375, 396, 453, 490, 557, 590, 682, 726, 823, 888, 1002, 1065, 1219
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

First differs from A285798 at a(30) = 52, A285798(30) = 51.

Examples

			The a(20) = 14 integer partitions:
  (20)
  (10,10)
  (14,6)
  (18,1,1)
  (12,6,1,1)
  (6,6,6,1,1)
  (10,6,1,1,1,1)
  (15,1,1,1,1,1)
  (14,1,1,1,1,1,1)
  (12,1,1,1,1,1,1,1,1)
  (6,6,1,1,1,1,1,1,1,1)
  (10,1,1,1,1,1,1,1,1,1,1)
  (6,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A321378 Number of integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 3, 2, 3, 0, 6, 1, 5, 3, 6, 1, 11, 2, 9, 6, 12, 5, 19, 4, 17, 11, 23, 9, 32, 10, 31, 22, 39, 17, 55, 21, 57, 37, 67, 33, 92, 44, 97, 65, 114, 63, 154, 78, 162, 113, 191, 117, 250, 138, 269, 194, 320
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(30) = 11 integer partitions:
  (30)
  (24,6)
  (15,15)
  (18,12)
  (20,10)
  (18,6,6)
  (12,12,6)
  (14,10,6)
  (10,10,10)
  (12,6,6,6)
  (6,6,6,6,6)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A321665 Number of strict integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 3, 1, 3, 2, 4, 1, 5, 2, 5, 4, 6, 4, 9, 3, 8, 7, 10, 6, 13, 7, 13, 12, 16, 10, 20, 13, 22, 19, 24, 18, 32, 23, 34, 30, 37, 30, 49, 37, 50, 47, 58, 51, 73, 58, 77, 74, 89, 80, 108, 91, 116
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(36) = 9 strict integer partitions:
  (36)
  (30,6)
  (21,15)
  (22,14)
  (24,12)
  (26,10)
  (18,12,6)
  (20,10,6)
  (14,12,10)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1+x^n],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - Joerg Arndt, Dec 22 2020

A321936 Number of integer partitions of n containing no 1's, prime powers, or squarefree numbers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 0, 3, 0, 2, 0, 3, 1, 1, 0, 7, 0, 2, 0, 5, 0, 5, 0, 7, 1, 3, 0, 12, 0, 4, 2, 10, 1, 8, 0, 14, 2, 6, 0, 22, 1, 10, 3, 20, 1, 15, 0, 26, 5, 12, 2
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Comments

Number of integer partitions of n using elements of A126706.

Examples

			The a(56) = 7 partitions:
  (56)
  (28,28)
  (36,20)
  (44,12)
  (20,18,18)
  (24,20,12)
  (20,12,12,12)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[n==1||PrimePowerQ[n]||SquareFreeQ[n],1,1/(1-x^n)],{n,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]
Showing 1-4 of 4 results.