This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321358 #21 Nov 11 2018 08:09:42 %S A321358 3,5,13,45,173,685,2733,10925,43693,174765,699053,2796205,11184813, %T A321358 44739245,178956973,715827885,2863311533,11453246125,45812984493, %U A321358 183251937965,733007751853,2932031007405,11728124029613,46912496118445,187649984473773,750599937895085,3002399751580333 %N A321358 a(n) = (2*4^n + 7)/3. %C A321358 Difference table: %C A321358 3, 5, 13, 45, 173, 685, 2733, ... (this sequence) %C A321358 2, 8, 32, 128, 512, 2048, 8192, ... A004171 %C A321358 6, 24, 96, 384, 1536, 6144, 24576, ... A002023 %H A321358 Colin Barker, <a href="/A321358/b321358.txt">Table of n, a(n) for n = 0..1000</a> %H A321358 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4). %F A321358 O.g.f.: (3 - 10*x) / ((1 - x)*(1 - 4*x)). - _Colin Barker_, Nov 10 2018 %F A321358 E.g.f.: (1/3)*(7*exp(x) + 2*exp(4*x)). - _Stefano Spezia_, Nov 10 2018 %F A321358 a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 3, a(1) = 5. %F A321358 a(n) = 4*a(n-1) - 7, a(0) = 3. %F A321358 a(n) = (2/3)*(4^n-1)/3 + 3. %F A321358 a(n) = A171382(2*n) = A155980(2*n+2). %F A321358 a(n) = A193579(n)/3. %F A321358 a(n) = A007583(n) + 2 = A001045(2*n+1) + 2. %t A321358 a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *) %t A321358 CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* _Stefano Spezia_, Nov 10 2018 *) %o A321358 (PARI) a(n) = (2*4^n + 7)/3; \\ _Michel Marcus_, Nov 08 2018 %o A321358 (PARI) Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ _Colin Barker_, Nov 10 2018 %Y A321358 Cf. A010701, A010727, A020988, A083594, A002023, A004171, A155980, A171382, A193579. %K A321358 nonn,easy %O A321358 0,1 %A A321358 _Paul Curtz_, Nov 07 2018 %E A321358 More terms from _Michel Marcus_, Nov 08 2018