This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321387 #15 Sep 08 2022 08:46:23 %S A321387 1,1,2,11,74,708,8583,127424,2239965,45514345,1049365071,27061132159, %T A321387 771695223819,24109698083919,818914886275467,30044684789498522, %U A321387 1184048086192376822,49883929845112421452,2237287911899357657492,106426388125032988691636,5352033610656721914626572 %N A321387 Expansion of Product_{k>=1} (1 + x^k)^(k^(k-1)). %C A321387 Weigh transform of A000169. %H A321387 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A321387 G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d^d ) * x^k/k). %F A321387 a(n) ~ n^(n-1) * (1 + exp(-1)/n + (3*exp(-1)/2 + 2*exp(-2))/n^2). - _Vaclav Kotesovec_, Nov 09 2018 %p A321387 a:=series(mul((1+x^k)^(k^(k-1)),k=1..100),x=0,21): seq(coeff(a,x,n),n=0..20); # _Paolo P. Lava_, Apr 02 2019 %t A321387 nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(k^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A321387 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}] %o A321387 (PARI) seq(n)={Vec(exp(sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*d^d ) * x^k/k) + O(x*x^n)))} \\ _Andrew Howroyd_, Nov 09 2018 %o A321387 (PARI) m=30; x='x+O('x^m); Vec(prod(k=1,m,(1+x^k)^(k^(k-1)))) \\ _G. C. Greubel_, Nov 09 2018 %o A321387 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1+x^k)^(k^(k-1)): k in [1..m]]) )); // _G. C. Greubel_, Nov 09 2018 %Y A321387 Cf. A000169, A023879, A261053, A283335, A321385, A321388. %K A321387 nonn %O A321387 0,3 %A A321387 _Ilya Gutkovskiy_, Nov 08 2018