This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321400 #7 Nov 08 2018 18:06:31 %S A321400 1,0,1,0,1,1,0,1,1,1,0,2,2,1,1,0,5,8,2,1,1,0,16,40,10,2,1,1,0,61,256, %T A321400 70,10,2,1,1,0,272,1952,656,75,10,2,1,1,0,1385,17408,7442,816,75,10,2, %U A321400 1,1,0,7936,177280,99280,11407,832,75,10,2,1,1 %N A321400 A family of sequences converging to the exponential limit of sec + tan (A320956). Square array A(n, k) for n >= 0 and k >= 0, read by descending antidiagonals. %C A321400 See the comments and definitions in A320956. Note also the corresponding construction for the exp function in A320955. %e A321400 Array starts: %e A321400 n\k 0 1 2 3 4 5 6 7 8 ... %e A321400 ------------------------------------------------------- %e A321400 [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 %e A321400 [1] 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... A000111 %e A321400 [2] 1, 1, 2, 8, 40, 256, 1952, 17408, 177280, ... A000828 %e A321400 [3] 1, 1, 2, 10, 70, 656, 7442, 99280, 1515190, ... A320957 %e A321400 [4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394 %e A321400 [5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ... %e A321400 [6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ... %e A321400 [7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ... %e A321400 [8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ... %e A321400 ------------------------------------------------------- %e A321400 Seen as a triangle given by descending antidiagonals: %e A321400 [0] 1 %e A321400 [1] 0, 1 %e A321400 [2] 0, 1, 1 %e A321400 [3] 0, 1, 1, 1 %e A321400 [4] 0, 2, 2, 1, 1 %e A321400 [5] 0, 5, 8, 2, 1, 1 %e A321400 [6] 0, 16, 40, 10, 2, 1, 1 %e A321400 [7] 0, 61, 256, 70, 10, 2, 1, 1 %p A321400 sf := proc(n) option remember; `if`(n <= 1, 1-n, (n-1)*(sf(n-1) + sf(n-2))) end: %p A321400 kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end: %p A321400 egf := n -> add(kernel(n, k)*((tan + sec)(x*(n - k))), k=0..n): %p A321400 A321400Row := proc(n, len) series(egf(n), x, len + 2): %p A321400 seq(coeff(%, x, k)*k!/n!, k=0..len) end: %p A321400 seq(lprint(A321400Row(n, 9)), n=0..9); %Y A321400 Cf. A000111 (n=1), A000828 (n=2), A320957 (n=3), A321394 (n=4), A320956 (limit). %Y A321400 Antidiagonal sums (and row sums of the triangle): A321399. %K A321400 nonn,tabl %O A321400 0,12 %A A321400 _Peter Luschny_, Nov 08 2018