This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321403 #9 May 31 2023 22:35:40 %S A321403 1,1,1,2,4,6,10,17,32,56,98,177,335,620,1164,2231,4349,8511,16870, %T A321403 33844,68746,140894,291698,610051,1288594,2745916,5903988,12805313, %U A321403 28010036,61764992,137281977,307488896,693912297,1577386813,3611241900,8324940862,19321470086 %N A321403 Number of non-isomorphic self-dual set multipartitions (multisets of sets) of weight n. %C A321403 Also the number of symmetric (0,1)-matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns. %C A321403 The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. %C A321403 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A321403 Andrew Howroyd, <a href="/A321403/b321403.txt">Table of n, a(n) for n = 0..50</a> %e A321403 Non-isomorphic representatives of the a(1) = 1 through a(7) = 17 set multipartitions: %e A321403 {{1}} {{1},{2}} {{2},{1,2}} {{1,2},{1,2}} {{1},{2,3},{2,3}} %e A321403 {{1},{2},{3}} {{1},{1},{2,3}} {{2},{1,3},{2,3}} %e A321403 {{1},{3},{2,3}} {{3},{3},{1,2,3}} %e A321403 {{1},{2},{3},{4}} {{1},{2},{2},{3,4}} %e A321403 {{1},{2},{4},{3,4}} %e A321403 {{1},{2},{3},{4},{5}} %e A321403 . %e A321403 {{1,2},{1,3},{2,3}} {{1,3},{2,3},{1,2,3}} %e A321403 {{3},{2,3},{1,2,3}} {{1},{1},{1,4},{2,3,4}} %e A321403 {{1},{1},{1},{2,3,4}} {{1},{2,3},{2,4},{3,4}} %e A321403 {{1},{2},{3,4},{3,4}} {{1},{4},{3,4},{2,3,4}} %e A321403 {{1},{3},{2,4},{3,4}} {{2},{1,2},{3,4},{3,4}} %e A321403 {{1},{4},{4},{2,3,4}} {{2},{1,3},{2,4},{3,4}} %e A321403 {{2},{4},{1,2},{3,4}} {{3},{4},{1,4},{2,3,4}} %e A321403 {{1},{2},{3},{3},{4,5}} {{4},{4},{4},{1,2,3,4}} %e A321403 {{1},{2},{3},{5},{4,5}} {{1},{1},{5},{2,3},{4,5}} %e A321403 {{1},{2},{3},{4},{5},{6}} {{1},{2},{2},{2},{3,4,5}} %e A321403 {{1},{2},{3},{4,5},{4,5}} %e A321403 {{1},{2},{4},{3,5},{4,5}} %e A321403 {{1},{2},{5},{5},{3,4,5}} %e A321403 {{1},{3},{5},{2,3},{4,5}} %e A321403 {{1},{2},{3},{4},{4},{5,6}} %e A321403 {{1},{2},{3},{4},{6},{5,6}} %e A321403 {{1},{2},{3},{4},{5},{6},{7}} %e A321403 Inequivalent representatives of the a(6) = 10 matrices: %e A321403 [0 0 1] [1 1 0] %e A321403 [0 1 1] [1 0 1] %e A321403 [1 1 1] [0 1 1] %e A321403 . %e A321403 [1 0 0 0] [1 0 0 0] [1 0 0 0] [1 0 0 0] [0 1 0 0] %e A321403 [1 0 0 0] [0 1 0 0] [0 0 1 0] [0 0 0 1] [0 0 0 1] %e A321403 [1 0 0 0] [0 0 1 1] [0 1 0 1] [0 0 0 1] [1 1 0 0] %e A321403 [0 1 1 1] [0 0 1 1] [0 0 1 1] [0 1 1 1] [0 0 1 1] %e A321403 . %e A321403 [1 0 0 0 0] [1 0 0 0 0] %e A321403 [0 1 0 0 0] [0 1 0 0 0] %e A321403 [0 0 1 0 0] [0 0 1 0 0] %e A321403 [0 0 1 0 0] [0 0 0 0 1] %e A321403 [0 0 0 1 1] [0 0 0 1 1] %e A321403 . %e A321403 [1 0 0 0 0 0] %e A321403 [0 1 0 0 0 0] %e A321403 [0 0 1 0 0 0] %e A321403 [0 0 0 1 0 0] %e A321403 [0 0 0 0 1 0] %e A321403 [0 0 0 0 0 1] %o A321403 (PARI) %o A321403 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A321403 c(p, k)={polcoef((prod(i=2, #p, prod(j=1, i-1, (1 + x^(2*lcm(p[i], p[j])) + O(x*x^k))^gcd(p[i], p[j]))) * prod(i=1, #p, my(t=p[i]); (1 + x^t + O(x*x^k))^(t%2)*(1 + x^(2*t) + O(x*x^k))^(t\2) )), k)} %o A321403 a(n)={my(s=0); forpart(p=n, s+=permcount(p)*c(p, n)); s/n!} \\ _Andrew Howroyd_, May 31 2023 %Y A321403 Cf. A007716, A049311, A135588, A135589, A138178, A283877, A316983, A319616. %Y A321403 Cf. A320796, A320797, A321403, A321404, A321405. %K A321403 nonn %O A321403 0,4 %A A321403 _Gus Wiseman_, Nov 15 2018 %E A321403 Terms a(11) and beyond from _Andrew Howroyd_, May 31 2023