This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321405 #5 Nov 15 2018 08:40:42 %S A321405 1,1,1,2,2,3,6,9,16,28,47 %N A321405 Number of non-isomorphic self-dual set systems of weight n. %C A321405 Also the number of (0,1) symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different. %C A321405 The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. %C A321405 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A321405 Non-isomorphic representatives of the a(1) = 1 through a(8) = 16 set systems: %e A321405 {{1}} {{1}{2}} {{2}{12}} {{1}{3}{23}} {{2}{13}{23}} %e A321405 {{1}{2}{3}} {{1}{2}{3}{4}} {{1}{2}{4}{34}} %e A321405 {{1}{2}{3}{4}{5}} %e A321405 . %e A321405 {{12}{13}{23}} {{13}{23}{123}} {{1}{13}{14}{234}} %e A321405 {{3}{23}{123}} {{1}{23}{24}{34}} {{12}{13}{24}{34}} %e A321405 {{1}{3}{24}{34}} {{1}{4}{34}{234}} {{1}{24}{34}{234}} %e A321405 {{2}{4}{12}{34}} {{2}{13}{24}{34}} {{2}{14}{34}{234}} %e A321405 {{1}{2}{3}{5}{45}} {{3}{4}{14}{234}} {{3}{4}{134}{234}} %e A321405 {{1}{2}{3}{4}{5}{6}} {{1}{2}{4}{35}{45}} {{4}{13}{14}{234}} %e A321405 {{1}{3}{5}{23}{45}} {{1}{2}{34}{35}{45}} %e A321405 {{1}{2}{3}{4}{6}{56}} {{1}{2}{5}{45}{345}} %e A321405 {{1}{2}{3}{4}{5}{6}{7}} {{1}{3}{24}{35}{45}} %e A321405 {{1}{4}{5}{25}{345}} %e A321405 {{2}{4}{12}{35}{45}} %e A321405 {{4}{5}{13}{23}{45}} %e A321405 {{1}{2}{3}{5}{46}{56}} %e A321405 {{1}{2}{4}{6}{34}{56}} %e A321405 {{1}{2}{3}{4}{5}{7}{67}} %e A321405 {{1}{2}{3}{4}{5}{6}{7}{8}} %Y A321405 Cf. A000219, A007716, A045778, A049311, A135588, A138178, A283877, A316980, A316983, A319616. %Y A321405 Cf. A320796, A320797, A321401, A321403, A321406. %K A321405 nonn,more %O A321405 0,4 %A A321405 _Gus Wiseman_, Nov 15 2018