This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321408 #4 Nov 16 2018 07:48:51 %S A321408 1,1,1,2,5,9,18,35,75,153,318 %N A321408 Number of non-isomorphic self-dual multiset partitions of weight n whose parts are aperiodic. %C A321408 A multiset is aperiodic if its multiplicities are relatively prime. %C A321408 Also the number of nonnegative integer symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which no row or column has a common divisor > 1. %C A321408 The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. %C A321408 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %e A321408 Non-isomorphic representatives of the a(1) = 1 through a(6) = 18 multiset partitions: %e A321408 {1} {1}{2} {2}{12} {12}{12} {12}{122} {112}{122} %e A321408 {1}{2}{3} {2}{122} {2}{1222} {12}{1222} %e A321408 {1}{1}{23} {1}{23}{23} {2}{12222} %e A321408 {1}{3}{23} {1}{3}{233} {12}{13}{23} %e A321408 {1}{2}{3}{4} {2}{13}{23} {1}{23}{233} %e A321408 {3}{3}{123} {1}{3}{2333} %e A321408 {1}{2}{2}{34} {2}{13}{233} %e A321408 {1}{2}{4}{34} {3}{23}{123} %e A321408 {1}{2}{3}{4}{5} {3}{3}{1233} %e A321408 {1}{1}{1}{234} %e A321408 {1}{2}{34}{34} %e A321408 {1}{2}{4}{344} %e A321408 {1}{3}{24}{34} %e A321408 {1}{4}{4}{234} %e A321408 {2}{4}{12}{34} %e A321408 {1}{2}{3}{3}{45} %e A321408 {1}{2}{3}{5}{45} %e A321408 {1}{2}{3}{4}{5}{6} %Y A321408 Cf. A000219, A007716, A120733, A138178, A316983, A319616. %Y A321408 Cf. A320796, A320797, A320803, A320804, A320805, A320806, A320807, A320809, A320813, A321410, A321411, A321412. %K A321408 nonn,more %O A321408 0,4 %A A321408 _Gus Wiseman_, Nov 16 2018