This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321414 #14 Nov 11 2018 00:43:32 %S A321414 0,0,1,0,2,0,0,3,0,1,0,4,2,3,0,0,5,0,6,0,1,0,6,0,10,6,4,0,0,7,4,15,0, %T A321414 12,0,1,0,8,0,21,2,20,12,5,0,0,9,0,28,24,35,0,21,0,1,0,10,6,36,0,64, %U A321414 10,35,22,6,0,0,11,0,45,0,84,84,70,0,33,0,1 %N A321414 Array read by antidiagonals: T(n,k) is the number of n element multisets of the 2k-th roots of unity with zero sum. %C A321414 Equivalently, the number of closed convex paths of length n whose steps are the 2k-th roots of unity up to translation. For even n, there will be k paths of zero area consisting of n/2 steps in one direction followed by n/2 steps in the opposite direction. %H A321414 Andrew Howroyd, <a href="/A321414/b321414.txt">Table of n, a(n) for n = 1..465</a> %F A321414 G.f. of column k = 2^r: 1/(1 - x^2)^k - 1. %F A321414 G.f. of column k = 2^r*p^e: ((2/(1 - x^p) - 1)/(1 - x^2)^p)^(k/p) - 1 for odd prime p. %e A321414 Array begins: %e A321414 ========================================================= %e A321414 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 %e A321414 ---|----------------------------------------------------- %e A321414 1 | 0 0 0 0 0 0 0 0 0 0 0 0 ... %e A321414 2 | 1 2 3 4 5 6 7 8 9 10 11 12 ... %e A321414 3 | 0 0 2 0 0 4 0 0 6 0 0 8 ... %e A321414 4 | 1 3 6 10 15 21 28 36 45 55 66 78 ... %e A321414 5 | 0 0 6 0 2 24 0 0 54 4 0 96 ... %e A321414 6 | 1 4 12 20 35 64 84 120 183 220 286 396 ... %e A321414 7 | 0 0 12 0 10 84 2 0 270 40 0 624 ... %e A321414 8 | 1 5 21 35 70 174 210 330 657 715 1001 1749 ... %e A321414 9 | 0 0 22 0 30 236 14 0 1028 220 0 3000 ... %e A321414 10 | 1 6 33 56 128 420 462 792 2097 2010 3003 6864 ... %e A321414 11 | 0 0 36 0 70 576 56 0 3312 880 2 11976 ... %e A321414 12 | 1 7 50 84 220 926 924 1716 6039 5085 8008 24216 ... %e A321414 ... %e A321414 T(5, 3) = 6 because there are 6 rotations of the following figure: %e A321414 o---o %e A321414 / \ %e A321414 o---o---o %e A321414 . %e A321414 T(6, 3) = 12 because there are 4 basic shapes illustrated below which with rotations and reflections give 3 + 2 + 1 + 6 = 12 convex paths. %e A321414 o o---o o---o %e A321414 / \ / \ \ \ %e A321414 o===o===o===o o o o o o o %e A321414 / \ \ / \ \ %e A321414 o---o---o o---o o---o %o A321414 (PARI) \\ only supports k with at most one odd prime factor. %o A321414 T(n, k)={my(r=valuation(k, 2), p); polcoef(if(k>>r == 1, 1/(1-x^2)^k + O(x*x^n), if(isprimepower(k>>r, &p), ((2/(1 - x^p) - 1)/(1 - x^2 + O(x*x^n))^p)^(k/p), error("Cannot handle k=", k) )), n)} %Y A321414 Main diagonal is A321415. %Y A321414 Columns include A053090(n+3), A321416, A321417, A321419. %Y A321414 Cf. A103306, A103314, A262181, A292355. %K A321414 nonn,tabl %O A321414 1,5 %A A321414 _Andrew Howroyd_, Nov 08 2018