cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321414 Array read by antidiagonals: T(n,k) is the number of n element multisets of the 2k-th roots of unity with zero sum.

This page as a plain text file.
%I A321414 #14 Nov 11 2018 00:43:32
%S A321414 0,0,1,0,2,0,0,3,0,1,0,4,2,3,0,0,5,0,6,0,1,0,6,0,10,6,4,0,0,7,4,15,0,
%T A321414 12,0,1,0,8,0,21,2,20,12,5,0,0,9,0,28,24,35,0,21,0,1,0,10,6,36,0,64,
%U A321414 10,35,22,6,0,0,11,0,45,0,84,84,70,0,33,0,1
%N A321414 Array read by antidiagonals: T(n,k) is the number of n element multisets of the 2k-th roots of unity with zero sum.
%C A321414 Equivalently, the number of closed convex paths of length n whose steps are the 2k-th roots of unity up to translation. For even n, there will be k paths of zero area consisting of n/2 steps in one direction followed by n/2 steps in the opposite direction.
%H A321414 Andrew Howroyd, <a href="/A321414/b321414.txt">Table of n, a(n) for n = 1..465</a>
%F A321414 G.f. of column k = 2^r: 1/(1 - x^2)^k - 1.
%F A321414 G.f. of column k = 2^r*p^e: ((2/(1 - x^p) - 1)/(1 - x^2)^p)^(k/p) - 1 for odd prime p.
%e A321414 Array begins:
%e A321414   =========================================================
%e A321414   n\k| 1  2  3  4   5   6   7    8    9   10   11    12
%e A321414   ---|-----------------------------------------------------
%e A321414    1 | 0  0  0  0   0   0   0    0    0    0    0     0 ...
%e A321414    2 | 1  2  3  4   5   6   7    8    9   10   11    12 ...
%e A321414    3 | 0  0  2  0   0   4   0    0    6    0    0     8 ...
%e A321414    4 | 1  3  6 10  15  21  28   36   45   55   66    78 ...
%e A321414    5 | 0  0  6  0   2  24   0    0   54    4    0    96 ...
%e A321414    6 | 1  4 12 20  35  64  84  120  183  220  286   396 ...
%e A321414    7 | 0  0 12  0  10  84   2    0  270   40    0   624 ...
%e A321414    8 | 1  5 21 35  70 174 210  330  657  715 1001  1749 ...
%e A321414    9 | 0  0 22  0  30 236  14    0 1028  220    0  3000 ...
%e A321414   10 | 1  6 33 56 128 420 462  792 2097 2010 3003  6864 ...
%e A321414   11 | 0  0 36  0  70 576  56    0 3312  880    2 11976 ...
%e A321414   12 | 1  7 50 84 220 926 924 1716 6039 5085 8008 24216 ...
%e A321414   ...
%e A321414 T(5, 3) = 6 because there are 6 rotations of the following figure:
%e A321414        o---o
%e A321414       /     \
%e A321414      o---o---o
%e A321414 .
%e A321414 T(6, 3) = 12 because there are 4 basic shapes illustrated below which with rotations and reflections give 3 + 2 + 1 + 6 = 12 convex paths.
%e A321414                         o        o---o     o---o
%e A321414                        / \      /     \     \   \
%e A321414     o===o===o===o     o   o    o       o     o   o
%e A321414                      /     \    \     /       \   \
%e A321414                     o---o---o    o---o         o---o
%o A321414 (PARI) \\ only supports k with at most one odd prime factor.
%o A321414 T(n, k)={my(r=valuation(k, 2), p); polcoef(if(k>>r == 1, 1/(1-x^2)^k + O(x*x^n), if(isprimepower(k>>r, &p), ((2/(1 - x^p) - 1)/(1 - x^2 + O(x*x^n))^p)^(k/p), error("Cannot handle k=", k) )), n)}
%Y A321414 Main diagonal is A321415.
%Y A321414 Columns include A053090(n+3), A321416, A321417, A321419.
%Y A321414 Cf. A103306, A103314, A262181, A292355.
%K A321414 nonn,tabl
%O A321414 1,5
%A A321414 _Andrew Howroyd_, Nov 08 2018