cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321425 Number of connected labeled almost cubic graphs on 2n nodes.

This page as a plain text file.
%I A321425 #21 Nov 23 2018 03:43:34
%S A321425 0,0,6,630,232260,167712300,207994906350,409639268108070,
%T A321425 1206311009131027800,5069191623021896970600,
%U A321425 29288218834810895163954750,225729928889064072869657010750,2263331356064784471285438421502700,28907890013735339531664032407056442500
%N A321425 Number of connected labeled almost cubic graphs on 2n nodes.
%C A321425 Almost cubic graphs are cubic graphs (A002829) where 2 points have degree 2 and these 2 points are non-adjacent. All other points have degree 3. They are constructed by removing an edge from the cubic graphs.
%H A321425 Andrew Howroyd, <a href="/A321425/b321425.txt">Table of n, a(n) for n = 0..100</a>
%H A321425 N. C. Wormald, <a href="https://dx.doi.org/10.1112/jlms/s2-20.1.1">Enumeration of labelled graphs II: cubic graphs with a given connectivity</a>, J. Lond Math Soc s2-20 (1979) 1-7, e.g.f. a(x).
%F A321425 a(n) = 3*n*A002829(n). [Wormald eq. (2.1)]
%e A321425 There is 1 unlabeled almost cubic graph on 4 nodes (the kite, obtained by removing an edge of the tetrahedron K_4). This has 6 = binomial(4,2) labeled versions obtained by selecting two out of 4 labels for the points of degree 2.
%t A321425 terms = 14; egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24 x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
%t A321425 CoefficientList[egf, x](2 Range[0, terms-1])! 3 Range[0, terms-1] (* _Jean-François Alcover_, Nov 23 2018, from A002829 *)
%o A321425 (PARI) b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ A002829
%o A321425 vector(20, n, n--; 3*n*b(n)) \\ _Michel Marcus_, Nov 10 2018
%Y A321425 Cf. A002829, A321426.
%K A321425 nonn
%O A321425 0,3
%A A321425 _R. J. Mathar_, Nov 09 2018
%E A321425 Terms a(11) and beyond from _Andrew Howroyd_, Nov 09 2018