cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321426 Number of connected labeled fairly cubic graphs on 2n nodes.

This page as a plain text file.
%I A321426 #14 Nov 23 2018 03:19:27
%S A321426 0,0,6,810,282660,195192900,235439369550,454833890480970,
%T A321426 1320613138677432600,5490000743915652564600,
%U A321426 31451199565381549069866750,240742295353571264522056037250,2400231508458936741386610203090700,30511229662020079098420585892148047500
%N A321426 Number of connected labeled fairly cubic graphs on 2n nodes.
%C A321426 Fairly cubic graphs are cubic graphs (A002829) where 2 points have degree 2. All other points have degree 3.
%H A321426 Andrew Howroyd, <a href="/A321426/b321426.txt">Table of n, a(n) for n = 0..100</a>
%H A321426 N. C. Wormald, <a href="https://dx.doi.org/10.1112/jlms/s2-20.1.1">Enumeration of labelled graphs II: cubic graphs with a given connectivity</a>, J. Lond Math Soc s2-20 (1979) 1-7, e.g.f. f(x).
%F A321426 a(n) = A321425(n) + n*(2*n-1)*(2*n-2)*A321427(n-2) + 2*n*(2*n-1)*a(n-1). [Wormald eq (2.3)]
%F A321426 a(n) = 3*n*A002829(n) + 2*n*(2*n-1)*a(n-1) + n*(2*n-1)*(2*n-2)*(2*n-3)*a(n-2). - _Andrew Howroyd_, Nov 09 2018
%t A321426 b[n_] := Sum[Sum[Sum[((-1)^(i+j)(2n)! (2(3n - i - 2j - 3k))!)/ (2^(5n -i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
%t A321426 seq[n_] := Module[{v = Table[0, {n+1}]}, For[k = 2, k <= n, k++, v[[k+1]] = 3k b[k] + 2k(2k - 1)v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k-1]]]; v];
%t A321426 seq[13] (* _Jean-François Alcover_, Nov 22 2018, after _Andrew Howroyd_ *)
%o A321426 (PARI) \\ here b(n) is A002829
%o A321426 b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!))));
%o A321426 seq(n)={my(v=vector(n+1)); for(n=2, n, v[n+1] = 3*n*b(n) + 2*n*(2*n-1)*v[n] + n*(2*n-1)*(2*n-2)*(2*n-3)*v[n-1]); v} \\ _Andrew Howroyd_, Nov 09 2018
%Y A321426 Cf. A002829, A321425, A321427.
%K A321426 nonn
%O A321426 0,3
%A A321426 _R. J. Mathar_, Nov 09 2018
%E A321426 Terms a(11) and beyond from _Andrew Howroyd_, Nov 09 2018