cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321430 Expansion of Product_{i>0, j>0} (1 - x^(i^2 + j^2)).

This page as a plain text file.
%I A321430 #15 Nov 10 2018 02:08:47
%S A321430 1,0,-1,0,0,-2,0,2,-1,0,0,0,1,0,0,4,0,-6,4,2,-7,2,7,-2,-4,2,-4,0,0,-4,
%T A321430 11,2,-16,2,13,-16,0,22,-12,-4,2,-14,12,10,-17,20,27,-48,-4,34,-27,-2,
%U A321430 22,-6,-4,4,-35,32,45,-72,29,66,-81,-40,76,-28,-24,68,-56,28
%N A321430 Expansion of Product_{i>0, j>0} (1 - x^(i^2 + j^2)).
%H A321430 Seiichi Manyama, <a href="/A321430/b321430.txt">Table of n, a(n) for n = 0..10000</a>
%F A321430 G.f.: Product_{k>0} (1 - x^k)^A063725(k).
%t A321430 nmax = 100; A063725 = Rest[CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^2/4, {x, 0, nmax}], x]]; s = 1; Do[s *= Sum[(-1)^j*Binomial[A063725[[k]], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* _Vaclav Kotesovec_, Nov 09 2018 *)
%Y A321430 Cf. A063725, A321428, A321431, A321432.
%K A321430 sign,look
%O A321430 0,6
%A A321430 _Seiichi Manyama_, Nov 09 2018