This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321464 #18 Sep 17 2019 08:31:05 %S A321464 0,1,2,3,4,7,6,5,8,9,10,19,12,13,22,21,16,25,18,11,20,15,14,23,24,17, %T A321464 26,27,28,55,30,31,58,57,34,61,36,37,64,39,40,67,66,49,76,63,46,73,48, %U A321464 43,70,75,52,79,54,29,56,33,32,59,60,35,62,45,38,65,42,41 %N A321464 Reverse nonzero digits in ternary expansion of n and convert back to decimal. %C A321464 This sequence is a self-inverse permutation of nonnegative integers with fixed points A321473. %C A321464 See A321474 for the decimal variant. %C A321464 The binary variant simply corresponds to the identity (A001477). %H A321464 Rémy Sigrist, <a href="/A321464/b321464.txt">Table of n, a(n) for n = 0..19683</a> %H A321464 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A321464 a(3 * n) = 3 * a(n). %e A321464 The first values at prime indices, alongside the corresponding ternary expansions, are: %e A321464 n a(n) ter(n) ter(a(n)) %e A321464 -- ---- ------ --------- %e A321464 2 2 2 2 %e A321464 3 3 10 10 %e A321464 5 7 12 21 %e A321464 7 5 21 12 %e A321464 11 19 102 201 %e A321464 13 13 111 111 %e A321464 17 25 122 221 %e A321464 19 11 201 102 %e A321464 23 23 212 212 %e A321464 29 55 1002 2001 %e A321464 31 31 1011 1011 %e A321464 37 37 1101 1101 %e A321464 41 67 1112 2111 %e A321464 43 49 1121 1211 %t A321464 a[n_] := Block[{x = IntegerDigits[n, 3], t}, t = Flatten@ Position[x, 1 | 2]; x[[Reverse@ t]] = x[[t]]; FromDigits[x, 3]]; Array[a, 68, 0] (* _Giovanni Resta_, Sep 17 2019 *) %o A321464 (PARI) a(n,base=3) = my (d=digits(n,base),t=Vecrev(select(sign,d)),i=0); for (j=1, #d, if (d[j], d[j] = t[i++])); fromdigits(d,base) %Y A321464 Cf. A001477, A004488, A030102, A321473, A321474. %K A321464 nonn,base,look %O A321464 0,3 %A A321464 _Rémy Sigrist_, Nov 10 2018