This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321466 #7 Feb 16 2025 08:33:57 %S A321466 1,-4,12,-20,28,-24,28,-32,60,-68,72,-48,44,-56,96,-120,124,-72,76, %T A321466 -80,168,-160,144,-96,76,-124,168,-212,224,-120,168,-128,252,-240,216, %U A321466 -192,92,-152,240,-280,360,-168,224,-176,336,-408,288,-192,140,-228,372 %N A321466 Expansion of (phi(x^3)^3 / phi(x))^2 in powers of x where phi() is a Ramanujan theta function. %C A321466 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A321466 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %C A321466 The g.f. of A113973 is k = k(q) := phi(x^3)^3 / phi(x) given in equation (2.2) page 996 of Williams 2012, and the g.f. of k^2 which is given in equation (2.3) page 997 is this sequence. %C A321466 Number 54 of the 126 eta-quotients listed in Table 1 of Williams 2012. %H A321466 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A321466 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %H A321466 K. S. Williams, <a href="http://dx.doi.org/10.1142/S1793042112500595">Fourier series of a class of eta quotients</a>, Int. J. Number Theory 8 (2012), no. 4, 993-1004. %F A321466 Expansion of (eta(q)^2 * eta(q^4)^2 * eta(q^6)^15 / (eta(q^2)^5 * eta(q^3)^6 * eta(q^12)^6))^2 in powers of q. %F A321466 Expansion of ((a(x) - 2*a(x^2) - 2*a(x^4))/3)^2 = ((b(x) + 2*b(x^4))^2 / (9*b(x^2)))^2 in powers of x where a(), b() are cubic AGM theta functions. %F A321466 Euler transform of period 12 sequence [-4, 6, 8, 2, -4, -12, -4, 2, 8, 6, -4, -4, ...]. %F A321466 G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (4/3) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A321465. %F A321466 G.f.: (theta_3(0, x^3)^3 / theta_3(0, x))^2 where theta_3(0, x) is a Jacobi theta function. %F A321466 G.f.: (Product_{k>0} f(x^k))^2 where f(x) := ((1 - x) * (1 + x^2))^2 * ((1 - x^3) * (1 + x^3)^3)^3 / ((1 - x^2) * (1 + x^6)^2)^3. %F A321466 a(n) = -4*(s(n) - 6*s(n/2) + s(n/3) + 4*s(n/4) + 2*s(n/6) + 4*s(n/12)) if n>0 where s(x) = sum of divisors of x for integer x else 0. %F A321466 a(n) = (-1)^n * A227226(n). Convolution square of A113973. %e A321466 G.f. = 1 - 4*x + 12*x^2 - 20*x^3 + 28*x^4 - 24*x^5 + 28*x^6 + ... %t A321466 a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3]^6 / EllipticTheta[ 3, 0, x]^2, {x, 0, n}]; %t A321466 a[ n_] := With[{s = If[ FractionalPart @ # > 0, 0, DivisorSigma[1, #]] &}, If[ n < 1, Boole[n == 0], -4 (s[n] - 6 s[n/2] + s[n/3] + 4 s[n/4] + 2 s[n/6] + 4 s[n/12])]]; %o A321466 (PARI) {a(n) = my(s = x -> if(frac(x), 0, sigma(x))); if( n<1, n==0, -4*(s(n) - 6*s(n/2) + s(n/3) + 4*s(n/4) + 2*s(n/6) + 4*s(n/12)))}; %o A321466 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^15 / (eta(x^2 + A)^5 * eta(x^3 + A)^6 * eta(x^12 + A)^6))^2, n))}; %o A321466 (Magma) A := Basis( ModularForms( Gamma0(12), 2), 51); A[1] - 4*A[2] + 12*A[3] - 20*A[4] + 28*A[5]; %Y A321466 Cf. A113973,A227226,A321465. %K A321466 sign %O A321466 0,2 %A A321466 _Michael Somos_, Nov 11 2018