cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321471 Heinz numbers of integer partitions that can be partitioned into blocks with sums {1, 2, ..., k} for some k.

Original entry on oeis.org

2, 6, 8, 30, 36, 40, 48, 64, 210, 252, 270, 280, 300, 324, 336, 360, 400, 432, 448, 480, 576, 640, 768, 1024, 2310, 2772, 2940, 2970, 3080, 3150, 3300, 3528, 3564, 3696, 3780, 3920, 3960, 4050, 4200, 4400, 4500, 4536, 4704, 4752, 4860, 4928, 5040, 5280, 5400
Offset: 1

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
These partitions are those that are finer than (k, ..., 3, 2, 1) in the poset of integer partitions of 1 + 2 + ... + k, for some k, ordered by refinement.

Examples

			The sequence of all integer partitions whose Heinz numbers are in the sequence begins: (1), (21), (111), (321), (2211), (3111), (21111), (111111), (4321), (42211), (32221), (43111), (33211), (222211), (421111), (322111), (331111), (2221111), (4111111), (3211111), (22111111), (31111111), (211111111), (1111111111).
The partition (322111) has Heinz number 360 and can be partitioned as ((1)(2)(3)(112)), ((1)(2)(12)(13)), or ((1)(11)(3)(22)), so 360 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[2,1000],Select[Map[Total[primeMS[#]]&,facs[#],{2}],Sort[#]==Range[Max@@#]&]!={}&]