cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321475 Zeroless factorials (version 2): a(0) = 1, and for any n > 0, a(n) = noz(1 * noz(2 * ... * noz((n-1) * n))), where noz(n) = A004719(n) omits the zeros from n.

Original entry on oeis.org

1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 399168, 576, 82728, 879912, 2397168, 337968, 5924736, 8851949568, 143936352, 31644, 92589264, 118459638, 3698784, 1197539136, 2387625984, 954864, 236271168, 3573339984, 238453776, 69587928, 142275168, 33566976
Offset: 0

Views

Author

Rémy Sigrist, Nov 11 2018

Keywords

Comments

This sequence is a variant of A243657 where the multiplications are carried in the opposite order; as (i, j) -> noz(i * j) is not associative in general we obtain another sequence.
Is this sequence bounded?

Examples

			For n = 12:
- noz(11 * 12) = noz(132) = 132,
- noz(10 * 132) = noz(1320) = 132,
- noz(9 * 132) = noz(1188) = 1188,
- noz(8 * 1188) = noz(9504) = 954,
- noz(7 * 954) = noz(6678) = 6678,
- noz(6 * 6678) = noz(40068) = 468,
- noz(5 * 468) = noz(2340) = 234,
- noz(4 * 234) = noz(936) = 936,
- noz(3 * 936) = noz(2808) = 288,
- noz(2 * 288) = noz(576) = 576,
- noz(1 * 576) = noz(576) = 576,
- hence a(12) = 576.
		

Crossrefs

Programs

  • Mathematica
    noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
    A321475[n_] := If[n == 0, 1, Block[{k = n}, Nest[noz[--k * #] &, n, n-1]]];
    Array[A321475, 50, 0] (* Paolo Xausa, May 20 2024 *)
  • PARI
    a(n, base=10) = my (f=max(1, n)); forstep (k=n-1, 2, -1, f = fromdigits(select(sign, digits(f*k, base)), base)); f

Formula

a(10^k) = a(10^k - 1) for any k >= 0.