A321477 Regular triangle read by rows: T(n,k) is the period of {A172236(k,m)} modulo n, 0 <= k <= n - 1.
1, 2, 3, 2, 8, 8, 2, 6, 4, 6, 2, 20, 12, 12, 20, 2, 24, 8, 6, 8, 24, 2, 16, 6, 16, 16, 6, 16, 2, 12, 8, 12, 4, 12, 8, 12, 2, 24, 24, 6, 8, 8, 6, 24, 24, 2, 60, 12, 12, 20, 6, 20, 12, 12, 60, 2, 10, 24, 8, 10, 24, 24, 10, 8, 24, 10, 2, 24, 8, 6, 8, 24, 4, 24, 8, 6, 8, 24
Offset: 1
Examples
Table begins 1; 2, 3; 2, 8, 8; 2, 6, 4, 6; 2, 20, 12, 12, 20; 2, 24, 8, 6, 8, 24; 2, 16, 6, 16, 16, 6, 16; 2, 12, 8, 12, 4, 12, 8, 12; 2, 24, 24, 6, 8, 8, 6, 24, 24; 2, 60, 12, 12, 20, 6, 20, 12, 12, 60; ...
Programs
Formula
Let p be an odd prime. (i) If ((k^2+4)/p) = 1: if p == 1 (mod 4), then T(p^e,k) is divisible by p^(e-1)*(p - 1), and T(p^e,k) is even; if p == 3 (mod 4), then T(p^e,k) is divisible by p^(e-1)*(p - 1) but not divisible by p^(e-1)*(p - 1)/2. Here (a/p) is the Legendre symbol. (ii) If ((k^2+4)/p) = -1, then T(p^e,k) is divisible by 2*p^(e-1)*(p + 1) but not divisible by p^(e-1)*(p + 1). (iii) If k^2 + 4 is divisible by p, then T(p^e,k) = 4*p^e.
For e, k > 0, T(2^e,k) = 3*2^(e-1) for odd k and 2^(e-v(k,2)+1) for even k, where v(k,2) is the 2-adic valuation of k.
If gcd(n_1,n_2) = 1, then T(n_1*n_2,k) = lcm(T(n_1,k mod n_1),T(n_2, k mod n_2)).
For n > 2, a(n,k)/A321476(n,k) = 4 iff A321476(n,k) is odd; 1 iff A321476(n,k) is even but not divisible by 4; 2 iff A321476(n,k) is divisible by 4.
Let p be an odd prime. (i) If ((k^2+4)/p) = 1: if p == 5 (mod 8), then T(p^e,k)/A321476(p^e,k) != 2; if p == 3 (mod 4), then T(p^e,k)/A321476(p^e,k) = 1. (ii) If ((k^2+4)/p) = -1: if p == 1 (mod 4), then T(p^e,k)/A321476(p^e,k) = 4; if p == 3 (mod 4), then T(p^e,k)/A321476(p^e,k) = 2.
T(n,k) <= 6*n.
Comments