A321478 Regular triangle read by rows: T(n,k) is the rank of {A316269(k,m)} modulo n, 0 <= k <= n - 1.
1, 2, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 5, 5, 3, 2, 3, 6, 6, 6, 3, 2, 3, 7, 4, 4, 7, 3, 2, 3, 8, 3, 4, 3, 8, 3, 2, 3, 9, 6, 9, 9, 6, 9, 3, 2, 3, 10, 15, 6, 6, 6, 15, 10, 3, 2, 3, 11, 5, 5, 6, 6, 5, 5, 11, 3, 2, 3, 12, 6, 6, 3, 4, 3, 6, 6, 12, 3
Offset: 1
Examples
Table begins 1; 2, 3; 2, 3, 3; 2, 3, 4, 3; 2, 3, 5, 5, 3; 2, 3, 6, 6, 6, 3; 2, 3, 7, 4, 4, 7, 3; 2, 3, 8, 3, 4, 3, 8, 3; 2, 3, 9, 6, 9, 9, 6, 9, 3; 2, 3, 10, 15, 6, 6, 6, 15, 10, 3; ...
Programs
Formula
Let p be a prime >= 5. (i) If k^2 - 4 is not divisible by p, then T(p^e,k) is divisible by p^(e-1)*(p - ((k^2-4)/p))/2. Here (a/p) is the Legendre symbol. (ii) If k^2 - 4 is divisible by p, then T(p^e,k) = p^e.
For e >= 2 and 1 < k < 2^e - 1, T(2^e,k) = 3*2^(e-v(k^2-1,2)) for odd k and 2^(e-v(k,2)+1) for even k, where v(k,2) is the 2-adic valuation of k.
For e > 0 and k > 1, T(3^e,k) = 2*3^(e-v(k,3)) for k divisible by 3 and 3^(e-v(k^2-1,3)+1) otherwise.
If gcd(n_1,n_2) = 1, then T(n_1*n_2,k) = lcm(T(n_1,k mod n_1),T(n_2, k mod n_2)).
T(n,k) <= (3/2)*n.
Comments