A321480 Zeroless analog of triangular numbers (version 2): a(0) = 0, and for any n > 0, a(n) = noz(1 + noz(2 + ... + noz((n-1) + n))), where noz(n) = A004719(n) omits the zeros from n.
0, 1, 3, 6, 1, 15, 3, 28, 9, 18, 19, 39, 6, 28, 15, 12, 1, 9, 99, 37, 39, 177, 64, 69, 39, 19, 72, 99, 37, 12, 69, 64, 87, 12, 289, 27, 54, 82, 39, 42, 19, 6, 57, 37, 27, 54, 82, 12, 69, 64, 69, 12, 64, 27, 27, 82, 12, 87, 289, 69, 39, 289, 72, 99, 64, 57, 24
Offset: 0
Examples
For n = 16: - noz(15 + 16) = noz(31) = 31, - noz(14 + 31) = noz(45) = 45, - noz(13 + 45) = noz(58) = 58, - noz(12 + 58) = noz(70) = 7, - noz(11 + 7) = noz(18) = 18, - noz(10 + 18) = noz(28) = 28, - noz(9 + 28) = noz(37) = 37, - noz(8 + 37) = noz(45) = 45, - noz(7 + 45) = noz(52) = 52, - noz(6 + 52) = noz(58) = 58, - noz(5 + 58) = noz(63) = 63, - noz(4 + 63) = noz(67) = 67, - noz(3 + 67) = noz(70) = 7, - noz(2 + 7) = noz(9) = 9, - noz(1 + 9) = noz(10) = 1, - hence a(16) = 1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000 (corrected by _Paolo Xausa_, Apr 17 2024)
Programs
-
Mathematica
noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]]; A321480[n_] := Block[{k = n}, Nest[noz[--k + #] &, n, Max[0, n-1]]]; Array[A321480,100,0] (* Paolo Xausa, Apr 17 2024 *)
-
PARI
a(n, base=10) = { my (t=n); forstep (k=n-1, 1, -1, t = fromdigits(select(sign, digits(t+k, base)), base)); t } \\ corrected by Rémy Sigrist, Apr 17 2024
Extensions
a(10), a(20), a(30), a(40), a(50) and a(60) corrected by Paolo Xausa, Apr 17 2024
Comments