cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321503 Numbers m such that m and m+1 both have at least 3 distinct prime factors.

Original entry on oeis.org

230, 285, 429, 434, 455, 494, 560, 594, 609, 615, 644, 645, 650, 665, 714, 740, 741, 759, 804, 805, 819, 825, 854, 860, 884, 902, 935, 945, 969, 986, 987, 1001, 1014, 1022, 1034, 1035, 1044, 1064, 1065, 1070, 1085, 1104, 1105, 1130, 1196, 1209, 1220, 1221, 1235, 1239, 1245, 1265
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2018

Keywords

Comments

Disjoint union of A140077 (omega({m, m+1}) = {3}) and A321493 (not both have exactly 3 prime divisors). The latter contains terms with indices {15, 60, 82, 98, 99, 104, ...} of this sequence.
Numbers m and m+1 can never have a common prime factor (consider them mod p), therefore the terms are > sqrt(A002110(3+3)), A002110 = primorial.

Crossrefs

Subsequence of A000977.
Cf. A255346, A321504 .. A321506, A321489 (analog for k = 2, ..., 7 prime divisors).
Cf. A321493, A321494 .. A321497 (subsequences of the above: m or m+1 has more than k prime divisors).
Cf. A074851, A140077, A140078, A140079 (complementary subsequences: m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>2]; Select[Range[1300], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    select( is(n)=omega(n)>2&&omega(n+1)>2, [1..1300])

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 25 2025

A321497 Numbers k such that both k and k+1 have at least 7 distinct prime factors and at least one has more than 7 distinct prime factors.

Original entry on oeis.org

5163068910, 5327923964, 6564937379, 6880516929, 7122669554, 8567026545, 8814635115, 9533531370, 9611079114, 10245081314, 10246336814, 10697507414, 10783550414, 10796559410, 11260076190, 11458770609, 11992960265, 12043540145, 12172828590, 12745759740, 12850545785, 12946979220
Offset: 1

Views

Author

Amiram Eldar and M. F. Hasler, Nov 13 2018

Keywords

Comments

Terms of A321489 (k and k+1 have at least 7 distinct prime factors) which don't satisfy the definition with "exactly 7".

Crossrefs

Cf. A321489, A321503, A321504, A321505, A321506, A321493, A321494, A321495, A321496 (analog for 3 .. 6 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>6 && v!={7, 7}]; Select[Range[10^10], aQ]
  • PARI
    is(n)=omega(n)>6&&omega(n+1)>6&&(omega(n)>7||omega(n+1)>7)

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.
Showing 1-3 of 3 results.