cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321491 Numbers of the form (x+y)(x^2+y^2), with integers x > y > 0.

Original entry on oeis.org

15, 40, 65, 85, 120, 156, 175, 203, 259, 272, 320, 369, 400, 405, 477, 520, 580, 585, 671, 680, 715, 803, 820, 888, 935, 960, 1080, 1105, 1111, 1157, 1248, 1261, 1400, 1417, 1464, 1484, 1624, 1625, 1695, 1755, 1820, 1875, 1885, 2055, 2072, 2080, 2176, 2295, 2336, 2380, 2465
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018

Keywords

Comments

If y = 0 is allowed, this adds the cubes A000578; if x = y is allowed, this adds A033430 = numbers of the form 4*x^3. None of these variants is in the OEIS yet.

Examples

			Let f(x,y) = (x+y)(x^2+y^2) = A321490(x,y), then:
a(1) = f(2,1) = 3*5 = 15,a(2) = f(3,1) = 4*10 = 40, a(3) = f(3,2) = 5*13 = 65,a(4) = f(4,1) = 5*17 = 85,a(5) = f(4,2) = 6*20 = 120, etc.
		

Crossrefs

Programs

  • PARI
    list_A321491(L=1e4,S=[])={for(m=2, sqrtnint(L, 3), for(n=1, m-1, if(L
    				

A321492 Numbers that can be written as (x + y)(x^2 + y^2), x > y > 0, in at least two ways.

Original entry on oeis.org

12325, 98600, 117720, 146705, 206312, 263840, 332775, 378505, 400945, 500200, 651456, 687245, 734400, 741845, 773800, 788800, 799240, 941760, 1173640, 1327360, 1533195, 1540625, 1650496, 1735105, 1836680, 1943240, 2048320, 2050880, 2110720, 2217280, 2662200, 2704360, 2965685
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018

Keywords

Comments

See A321491 for numbers of the form (x+y)(x^2+y^2) = A321490(x,y) with x > y > 0.

Examples

			12325 = (13+16)(13^2+16^2) = (3+22)(3^2+22^2).
98600 = (26+32)(26^2+32^2) = (6+44)(6^2+44^2).
117720 = (21+39)(21^2+39^2) = (8+46)(8^2+46^2).
146705 = (24+41)(24^2+41^2) = (14+47)(14^2+47^2).
206312 = (15+53)(15^2+53^2) = (32+42)(32^2+42^2).
263840 = (6+62)(6^2+62^2) = (33+47)(33^2+47^2).
		

Crossrefs

Programs

  • PARI
    A321492_list(L=1e6)={my(S=[],T=List(),t);for(m=2,sqrtn(L,3),while(#S&&S[1]<=m^3, S=S[^1]); for(n=1,m-1,if(L
    				
Showing 1-2 of 2 results.