A321492 Numbers that can be written as (x + y)(x^2 + y^2), x > y > 0, in at least two ways.
12325, 98600, 117720, 146705, 206312, 263840, 332775, 378505, 400945, 500200, 651456, 687245, 734400, 741845, 773800, 788800, 799240, 941760, 1173640, 1327360, 1533195, 1540625, 1650496, 1735105, 1836680, 1943240, 2048320, 2050880, 2110720, 2217280, 2662200, 2704360, 2965685
Offset: 1
Keywords
Examples
12325 = (13+16)(13^2+16^2) = (3+22)(3^2+22^2). 98600 = (26+32)(26^2+32^2) = (6+44)(6^2+44^2). 117720 = (21+39)(21^2+39^2) = (8+46)(8^2+46^2). 146705 = (24+41)(24^2+41^2) = (14+47)(14^2+47^2). 206312 = (15+53)(15^2+53^2) = (32+42)(32^2+42^2). 263840 = (6+62)(6^2+62^2) = (33+47)(33^2+47^2).
Links
- Geoffrey B. Campbell, (m+n)(m²+n²) in two different ways, LinkedIn Number Theory Group, Aug. 2018
Programs
-
PARI
A321492_list(L=1e6)={my(S=[],T=List(),t);for(m=2,sqrtn(L,3),while(#S&&S[1]<=m^3, S=S[^1]); for(n=1,m-1,if(L
Comments