cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A321506 Numbers m such that m and m+1 each have at least 6 distinct prime factors.

Original entry on oeis.org

11243154, 13516580, 16473170, 16701684, 17348330, 19286805, 20333495, 21271964, 21849905, 22054515, 22527141, 22754589, 22875489, 24031370, 25348070, 25774329, 28098245, 28618394, 28625960, 30259229, 31846269, 32642805, 32734910, 33205029, 33631520, 33641894, 35023365
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

Equals A273879 up to a(138) = 58524465, which is not in A273879: see A321496 for the complement.

Crossrefs

Cf. A273879 (variant with "exactly 6"), A321496 (terms not in A273879).
Cf. A321505 (analog for k=5 prime factors).

Programs

A321493 Numbers m such that m and m+1 both have at least 3, but m or m+1 has at least 4 distinct prime factors.

Original entry on oeis.org

714, 1364, 1595, 1770, 1785, 1869, 2001, 2090, 2145, 2184, 2210, 2261, 2345, 2379, 2414, 2639, 2805, 2820, 2849, 2870, 2925, 3002, 3009, 3059, 3080, 3219, 3255, 3289, 3354, 3366, 3444, 3450, 3485, 3534, 3654, 3689, 3705
Offset: 1

Views

Author

M. F. Hasler, Nov 13 2018

Keywords

Comments

A321503 lists numbers m such that m and m+1 both have at least 3 distinct prime factors, while A140077 lists numbers such that m and m+1 have exactly 3 distinct prime factors. This sequence is the complement of the latter in the former, it consists of terms with indices (15, 60, 82, 98, 99, 104, ...) of the former.
Since m and m+1 can't share a prime factor, we have a(n)*(a(n)+1) >= p(3+4)# = A002110(7). Remarkably enough, a(1) = A000196(A002110(3+4)) exactly!

Crossrefs

Cf. A321494, A321495, A321496, A321497 (analog for 4, 5, 6, 7 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n],PrimeNu[n+1]}},Min[v]>2 && v!={3,3}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
    dpfQ[{a_,b_}]:=a>2&&b>2&&(a>3||b>3); Position[Partition[PrimeNu[Range[4000]],2,1],?dpfQ]//Flatten (* _Harvey P. Dale, Apr 21 2025 *)
  • PARI
    select( is(n)=omega(n)>2&&omega(n+1)>2&&(omega(n)>3||omega(n+1)>3), [1..1300])

Formula

A321494 Numbers k such that k and k+1 have at least 4 but not both exactly 4 distinct prime factors.

Original entry on oeis.org

38570, 40754, 51414, 51765, 58695, 60605, 62985, 66044, 68585, 70889, 71070, 73185, 73814, 74865, 77349, 82004, 83265, 83720, 83979, 85085, 87009, 90804, 90915, 91805, 91884, 92378, 94094, 94829, 96459, 97565, 98769, 98889, 100814, 101269, 101660, 104005, 104754, 105468, 107184, 108030, 108185, 108965
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

A321504 lists numbers n such that k and k+1 both have at least 4 distinct prime factors, while A140078 lists numbers such that k and k+1 have exactly 4 distinct prime factors. This sequence is the complement of the latter in the former, it consists of terms with indices (124, 214, 219, 276, 321, 415, ...) of the former.

Crossrefs

Cf. A140078, A321504; A321493, A321496 (analog for 3 & 5 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n],PrimeNu[n+1]}},Min[v]>3 && v!={4,4}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    is(n)=vecmin(n=[omega(n),omega(n+1)])>=4&&n!=[4,4]

Formula

A321495 Numbers k such that k and k+1 have at least 5 but not both exactly 5 distinct prime factors.

Original entry on oeis.org

728364, 1565564, 1774409, 1817529, 1923635, 2162094, 2187185, 2199834, 2225894, 2369850, 2557190, 2594514, 2659734, 2671305, 2794154, 2944689, 2964884, 3126045, 3139730, 3170244, 3244955, 3273809, 3279639, 3382379, 3387054, 3506810, 3555110, 3585945, 3686969, 3711630
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2018

Keywords

Comments

Complement of A140079 (k and k+1 have exactly 5 distinct prime factors) in A321505 (k and k+1 have at least 5 distinct prime factors).

Crossrefs

Cf. A140079, A321505; A321494, A321496 (analog for 4 & 6 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n],PrimeNu[n+1]}},Min[v]>4 && v!={5,5}]; Select[Range[120000], aQ] (* Amiram Eldar, Nov 12 2018 *)
  • PARI
    is(n)=vecmin(n=[omega(n), omega(n+1)])>4&&n!=[5,5]

Formula

A321497 Numbers k such that both k and k+1 have at least 7 distinct prime factors and at least one has more than 7 distinct prime factors.

Original entry on oeis.org

5163068910, 5327923964, 6564937379, 6880516929, 7122669554, 8567026545, 8814635115, 9533531370, 9611079114, 10245081314, 10246336814, 10697507414, 10783550414, 10796559410, 11260076190, 11458770609, 11992960265, 12043540145, 12172828590, 12745759740, 12850545785, 12946979220
Offset: 1

Views

Author

Amiram Eldar and M. F. Hasler, Nov 13 2018

Keywords

Comments

Terms of A321489 (k and k+1 have at least 7 distinct prime factors) which don't satisfy the definition with "exactly 7".

Crossrefs

Cf. A321489, A321503, A321504, A321505, A321506, A321493, A321494, A321495, A321496 (analog for 3 .. 6 factors).

Programs

  • Mathematica
    aQ[n_]:=Module[{v={PrimeNu[n], PrimeNu[n+1]}}, Min[v]>6 && v!={7, 7}]; Select[Range[10^10], aQ]
  • PARI
    is(n)=omega(n)>6&&omega(n+1)>6&&(omega(n)>7||omega(n+1)>7)

A321502 Numbers m such that m and m+1 have at least 2, but m or m+1 has at least 3 prime divisors.

Original entry on oeis.org

65, 69, 77, 84, 90, 104, 105, 110, 114, 119, 129, 132, 140, 153, 154, 155, 164, 165, 170, 174, 182, 185, 186, 189, 194, 195, 203, 204, 209, 219, 220, 221, 230, 231, 234, 237, 245, 246, 252, 254, 258, 259, 260, 264, 265, 266, 272, 273, 275, 279, 284, 285, 286, 290, 294, 299, 300, 305
Offset: 1

Views

Author

M. F. Hasler, Nov 27 2018

Keywords

Comments

Since m and m+1 cannot have a common factor, m(m+1) has at least 2+3 prime divisors (= distinct prime factors), whence m+1 > sqrt(primorial(5)) ~ 48. It turns out that a(1)*(a(1)+1) = 2*3*5*11*13, i.e., the prime factor 7 is not present.

Crossrefs

Cf. A321493, A321494, A321495, A321496, A321497 (analog for k = 3, ..., 7 prime divisors).
Cf. A074851, A140077, A140078, A140079 (m and m+1 have exactly k = 2, 3, 4, 5 prime divisors).
Cf. A255346, A321503 .. A321506, A321489 (m and m+1 have at least 2, ..., 7 prime divisors).

Programs

  • PARI
    select( is_A321502(n)=vecmax(n=[omega(n), omega(n+1)])>2&&vecmin(n)>1, [1..500])

Formula

Equals A255346 \ A074851.
Showing 1-6 of 6 results.