cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321498 Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.

This page as a plain text file.
%I A321498 #18 Dec 07 2018 19:13:42
%S A321498 45,63,81,96,99,117,128,135,153,160,171,175,189,192,207,224,225,243,
%T A321498 256,261,275,279,288,297,315,320,325,333,351,352,360,369,375,384,387,
%U A321498 405,416,423,425,432,441,448,459,475,477,480,495,504,512,513,525,531,539,544,549,567,575,576,585
%N A321498 Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.
%C A321498 An equivalent form is (x - y)^2*(x + y), or d^2*(d + 2y), where d = x - y > 0 and y > 0. See also A321499.
%H A321498 David A. Corneth, <a href="/A321498/b321498.txt">Table of n, a(n) for n = 1..13937</a> (terms < 10^5)
%H A321498 Geoffrey B. Campbell, <a href="https://www.linkedin.com/groups/4510047/4510047-6434733867093057540">(m-n)(m^2-n^2) in two different ways</a>, LinkedIn Number Theory Group, Aug. 2018.
%e A321498    45 = (4 - 1)*(4^2 - 1^2) = (23 - 22)*(23^2 - 22^2),
%e A321498    63 = (5 - 2)*(5^2 - 2^2) = (32 - 31)*(32^2 - 31^2),
%e A321498    81 = (6 - 3)*(6^2 - 3^2) = (41 - 40)*(41^2 - 40^2),
%e A321498    96 = (5 - 1)*(5^2 - 1^2) = (13 - 11)*(13^2 - 11^2),
%e A321498    99 = (7 - 4)*(7^2 - 4^2) = (50 - 49)*(50^2 - 49^2),
%e A321498   117 = (8 - 5)*(8^2 - 5^2) = (59 - 58)*(59^2 - 58^2).
%t A321498 aQ[n_] := Length[Solve[(x-y)*(x^2-y^2) ==n && x > y && y > 0, {x,y}, Integers]] > 1; Select[Range[600], aQ] (* _Amiram Eldar_, Dec 06 2018 *)
%o A321498 (PARI) select( is_A321498(n,c=2)={n&&!issquarefree(n)&&fordiv(n, d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d, 0)||c--||return(1))}, [0..999]) \\ Define the function is_A321498(). \\ ~30% speed up by _David A. Corneth_, Nov 23 2018
%o A321498 (PARI) is(n) = {if(issquarefree(n), return(0)); if(n % 2 == 0, if(n % 8 == 0, n\=8, return(0))); f = factor(n); e = select(x -> x > 1, f[, 2], 1); if(#e == 0 || n == 1, return(0), k = e[1]); n > f[k, 1]^3} \\ _David A. Corneth_, Dec 01 2018
%Y A321498 Cf. A321499.
%K A321498 nonn
%O A321498 1,1
%A A321498 Geoffrey B. Campbell and _M. F. Hasler_, Nov 22 2018