A321501 Numbers not of the form (x - y)(x^2 - y^2) with x > y > 0; complement of A321499.
0, 1, 2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 36, 38, 42, 44, 46, 50, 52, 54, 58, 60, 62, 66, 68, 70, 74, 76, 78, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 114, 116, 118, 122, 124, 126, 130, 132, 134, 138, 140, 142, 146, 148, 150, 154, 156, 158, 162, 164, 166, 170, 172, 174, 178
Offset: 1
Examples
a(1) = 0, a(2) = 1 and a(3) = 2 obviously can't be of the form (x - y)(x^2 - y^2) with x > y > 0, which is necessarily greater than 1*3 = 3. See A321499 for examples of the terms that are not in the sequence.
Crossrefs
Programs
-
PARI
is(n)={!n||!fordiv(n,d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d,0)||return)} \\ Uses the initial definition. More efficient variant below:
-
PARI
select( is_A321501(n)=!bittest(n,0)&&(n%8||n<9)||n<3, [0..99]) \\ Defines the function is_A321501(). The select() command is an illustration and a check.
-
PARI
A321501_list(M)={setunion([1],setminus([0..M\2]*2,[2..M\8]*8))} \\ Return all terms up to M; more efficient than to use select(...,[0..M]) as above.
-
PARI
A321501(n)=if(n>6,(n-2)*9\/8*2,n>3,n*2-4,n-1)
Formula
Asymptotic density is 3/8.
a(n) = round((n-2)*9/8)*2 for all n > 6.
Comments