This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A321507 #7 Nov 14 2018 14:01:38 %S A321507 1,1,1,3,3,3,10,10,10,22,29,29,56,70,70,127,176,176,283,367,395,644, %T A321507 833,889,1315,1714,1910,2791,3606,3942,5538,7413,8169,11100,14544, %U A321507 16140,21927,28886,32344,42152,54728,62624,81625,105148,120310,152699,197624 %N A321507 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)/2))^A072964(k). %C A321507 a(n) is the number of partitions of n into triangular numbers k*(k + 1)/2 of A072964(k) kinds. %H A321507 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A321507 G.f.: Product_{k>=1} 1/(1 - x^A000217(k))^A007294(A000217(k)). %e A321507 a(6) = 10 because we have [{6}], [{3, 3}], [{3}, {3}], [{3, 1, 1, 1}], [{3}, {1, 1, 1}], [{3}, {1}, {1}, {1}], [{1, 1, 1, 1, 1, 1}], [{1, 1, 1}, {1, 1, 1}], [{1, 1, 1}, {1}, {1}, {1}] and [{1}, {1}, {1}, {1}, {1}, {1}]. %t A321507 b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2)), {k, 1, n}], {x, 0, n (n + 1)/2}]; a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2))^b[k], {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 0, 46}] %Y A321507 Cf. A000217, A001970, A007294, A072964, A300300. %K A321507 nonn %O A321507 0,4 %A A321507 _Ilya Gutkovskiy_, Nov 11 2018