cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321513 Numbers that are periodic in base 4, written in decimal, where the base-4 expansion contains at least two periods.

This page as a plain text file.
%I A321513 #38 Nov 19 2018 20:59:31
%S A321513 5,10,15,17,21,34,42,51,63,65,68,85,102,119,130,136,153,170,187,195,
%T A321513 204,221,238,255,257,260,273,325,341,390,455,514,520,546,585,650,682,
%U A321513 715,771,780,819,845,910,975,1023,1025,1028,1040,1092,1105,1170,1235,1285
%N A321513 Numbers that are periodic in base 4, written in decimal, where the base-4 expansion contains at least two periods.
%e A321513 The base-4 representation of 17 is 101, which is periodic when considering leading zeros, i.e., 0101, so 17 is a term of the sequence.
%e A321513 The base-4 representation of 170 is 2222, which is periodic, so 170 is a term of the sequence.
%e A321513 The base-4 representation of 1495 is 113113, which is periodic, so 1495 is a term of the sequence.
%o A321513 (PARI) subvec(vec, pos, len) = my(w=[]); for(k=pos, pos+len-1, if(k > #vec, return(0), w=concat(w, vec[k]))); w
%o A321513 is_perio(vec) = my(d=divisors(#vec), v=[], w=[]); for(x=2, #d-1, v=subvec(vec, 1, d[x]); forstep(y=1, #vec, d[x], w=subvec(vec, y, d[x]); if(w!=v, break, if(y+d[x] >= #vec, return(1))))); 0
%o A321513 is(n) = my(d=digits(n, 4), z=[]); if(#d < 2, return(0)); if(vecmin(d)==vecmax(d), return(1)); while(#z <= #d, if(is_perio(concat(z, d)), return(1)); z=concat(z, [0])); 0
%o A321513 (PARI) is(n, b=4) = for (w=1, oo, my (d=digits(n, b^w)); if (#d<=1, return (0), #Set(d)==1, return (1))) \\ _Rémy Sigrist_, Nov 16 2018
%Y A321513 Cf. A007090, A242139.
%K A321513 nonn,base
%O A321513 1,1
%A A321513 _Felix Fröhlich_, Nov 11 2018